
XML

Erik T. Ray

Learning

Creating Self-Describing Data 2nd Edition

Covers W3C XML Schema

Learning XML

Other XML resources from O’Reilly

Related titles XML in a Nutshell

XML Pocket Reference

XSLT

XSLT Cookbook

XML Schema

Web Services Essentials

SVG Essentials

Programming Web Services
with SOAP

Programming Web Services
with XML-RPC

XPath and XPointer

XSL-FO

Perl and XML

Python and XML

Java and XML

Java and XML Data Binding

Java and XSLT

XML Books
Resource Center

xml.oreilly.com is a complete catalog of O’Reilly’s books on
XML and related technologies, including sample chapters and
code examples.

XML.com helps you discover XML and learn how this Internet
technology can solve real-world problems in information man-
agement and electronic commerce.

Conferences O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Learning XML
SECOND EDITION

Erik T. Ray

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

49

Chapter 2 CHAPTER 2

Markup and Core Concepts

There’s a Far Side cartoon by Gary Larson about an unusual chicken ranch. Instead
of strutting around, pecking at seed, the chickens are all lying on the ground or
draped over fences as if they were made of rubber. You see, it was a boneless chicken
ranch.

Just as skeletons give us vertebrates shape and structure, markup does the same for
text. Take out the markup and you have a mess of character data without any form.
It would be very difficult to write a computer program that did anything useful with
that content. Software relies on markup to label and delineate pieces of data, the way
suitcases make it easy for you to carry clothes with you on a trip.

This chapter focuses on the details of XML markup. Here I will describe the funda-
mental building blocks of all XML-derived languages: elements, attributes, entities,
processing instructions, and more. And I’ll show you how they all fit together to
make a well-formed XML document. Mastering these concepts is essential to under-
standing every other topic in the book, so read this chapter carefully.

All of the markup rules for XML are laid out in the W3C’s technical recommenda-
tion for XML version 1.0 (http://www.w3.org/TR/2000/REC-xml-20001006). This is
the second edition of the original which first appeared in 1998. You may also find
Tim Bray’s annotated, interactive version useful. Go and check it out at http://www.
xml.com/axml/testaxml.htm.

Tags
If XML markup is a structural skeleton for a document, then tags are the bones.
They mark the boundaries of elements, allow insertion of comments and special
instructions, and declare settings for the parsing environment. A parser, the front line
of any program that processes XML, relies on tags to help it break down documents
into discrete XML objects. There are a handful of different XML object types, listed
in Table 2-1.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Markup and Core Concepts

Elements are the most common XML object type. They break up the document into
smaller and smaller cells, nesting inside one another like boxes. Figure 2-1 shows the
document in Chapter 1 partitioned into separate elements. Each of these pieces has
its own properties and role in a document, so we want to divide them up for sepa-
rate processing.

Inside element start tags, you sometimes will see some extra characters next to the
element name in the form of name="value". These are attributes. They associate

Table 2-1. Types of tags in XML

Object Purpose Example

empty element Represent information at a specific point in the
document.

<xref linkend="abc"/>

container element Group together elements and character data. <p>This is a paragraph.</p>

declaration Add a new parameter, entity, or grammar defi-
nition to the parsing environment.

<!ENTITY author "Erik Ray">

processing instruction Feed a special instruction to a particular type of
software.

<?print-formatter force-linebreak?>

comment Insert an annotation that will be ignored by
the XML processor.

<!-- here's where I left off -->

CDATA section Create a section of character data that should
not be parsed, preserving any special charac-
ters inside it.

<![CDATA[Ampersands galore! &&&&&&]]>

entity reference Command the parser to insert some text stored
elsewhere.

&company-name;

Figure 2-1. Telegram with element boundaries visible

<?xml version="1.0"?>

 <telegram pri="important">

 <to>Sarah Bellum</to>

 <from>Colonel Timeslip</from>

 <subject>Robot-sitting instructions</subject>

 <graphic fileref="figs/me.jpg"/>

 <message>Thanks for watching my robot pal

 <name>Zonky</name>

 while I'm away. He needs to be recharged

 <emphasis>twice a day</emphasis>

 and if he starts to get cranky, give

 him a quart of oil. I'll be back soon,

 after I've tracked down that evil mastermind

 <villian>Dr. Indigo Riceway</villian>

 </message>

 </telegram>

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Documents | 51

information with an element that may be inappropriate to include as character data.
In the telegram example earlier, look for an attribute in the start tag of the telegram

element.

Declarations are never seen inside elements, but may appear at the top of the docu-
ment or in an external document type definition file. They are important in setting
parameters for the parsing session. They define rules for validation or declare special
entities to stand in for text.

The next three objects are used to alter parser behavior while it’s going over the doc-
ument. Processing instructions are software-specific directives embedded in the
markup for convenience (e.g., storing page numbers for a particular formatter). Com-
ments are regions of text that the parser should strip out before processing, as they
only have meaning to the author. CDATA sections are special regions in which the
parser should temporarily suspend its tag recognition.

Rounding out the list are entity references, commands that tell the parser to insert
predefined pieces of text in the markup. These objects don’t follow the pattern of
other tags in their appearance. Instead of angle brackets for delimiters, they use the
ampersand and semicolon.

In upcoming sections, I’ll explain each of these objects in more detail.

Documents
An XML document is a special construct designed to archive data in a way that is
most convenient for parsers. It has nothing to do with our traditional concept of doc-
uments, like the Magna Carta or Time magazine, although those texts could be
stored as XML documents. It simply is a way of describing a piece of XML as being
whole and intact for parsing.

It’s important to think of the document as a logical entity rather than a physical one.
In other words, don’t assume that a document will be contained within a single file
on a computer. Quite often, a document may be spread out across many files, and
some of these may live on different systems. All that is required is that the XML
parser reading the document has the ability to assemble the pieces into a coherent
whole. Later, we will talk about mechanisms used in XML for linking discrete physi-
cal entities into a complete logical unit.

As Figure 2-2 shows, an XML document has two parts. First is the document prolog,
a special section containing metadata. The second is an element called the document
element, also called the root element for reasons you will understand when we talk
about trees. The root element contains all the other elements and content in the
document.

The prolog is optional. If you leave it out, the parser will fall back on its default
settings. For example, it automatically selects the character encoding UTF-8 (or

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Markup and Core Concepts

UTF-16, if detected) unless something else is specified. The root element is
required, because a document without data is just not a document.*

The Document Prolog
Being a flexible markup language toolkit, XML lets you use different character
encodings, define your own grammars, and store parts of the document in many
places. An XML parser needs to know about these particulars before it can start its
work. You communicate these options to the parser through a construct called the
document prolog.

The document prolog (if you use one) comes at the top of the document, before the
root element. There are two parts (both optional): an XML declaration and a docu-
ment type declaration.† The first sets parameters for basic XML parsing while the
second is for more advanced settings. The XML declaration, if used, has to be the
first line in the document. Example 2-1 shows a document containing a full prolog.

Figure 2-2. Parts of an XML document

* Interestingly, there is no rule that says the root element has to contain anything. This leads to the amusing
fact that the following smiley of a perplexed, bearded dunce is a well-formed document: <:-/>. It’s an empty
element whose name is “:-”.

† Don’t confuse document type declaration with document type definition, a completely different beast. To keep
the two terms distinct, I will always refer to the latter one with the acronym “DTD.”

<?xml version="1.0"? encoding="utf8">

<!DOCTYPE telegram
 SYSTEM "/xml-resources/dtds/
telegram.dtd"
[

<!ENTITY myname "Colonel Timeslip">

]>

<telegram pri="important">
 <to>Sarah Bellum</to>
 <from>Colonel Timeslip</from>
 <subject>Robot-sitting
 instructions</subject>
 <graphic fileref="figs/me.jpg"/>
 <message>Thanks for watching my
 robot pal <name>Zonky</name>
 ...
</telegram>

XML
declaration

Document type
declaration

Entity
declaration

Document
element

Document
prolog

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The Document Prolog | 53

The XML Declaration
The XML declaration is a small collection of details that prepare an XML processor
for working with a document. It is optional, but when used it must always appear in
the first line. Figure 2-3 shows the form it takes. It starts with the delimiter <?xml (1),
contains a number of parameters (2), and ends with the delimiter ?> (3).

Each parameter consists of a name, an equals sign (=), and a quoted value. The
version parameter must appear if the other parameters are used:

version

Declares the version of XML used. At the moment, only version 1.0 is officially
recognized, but version 1.1 may be available soon.

encoding

Defines the character encoding used in the document. If undefined, the default
encoding UTF-8 (or UTF-16, if the document begins with the xFEFF Byte Order
Mark) will be used, which works fine for most documents used in English-speak-
ing countries. Character encodings are explained in Chapter 9.

standalone

Informs the parser whether there are any declarations outside of the document.
As I explain in the next section, declarations are constructs that contribute infor-
mation to the parser for assembling and validating a document. The default
value is “no”; setting it to “yes” tells the processor there are no external declara-
tions required for parsing the document. It does not, as the name may seem to
imply, mean that no other resources need to be loaded. There could well be
parts of the document in other files.

Example 2-1. A document with a full prolog

<?xml version="1.0" standalone="no"?> The XML declaration
<!DOCTYPE Beginning of the DOCTYPE declaration
 reminder Root element name
 SYSTEM "/home/eray/reminder.dtd" DTD identifier
 [Internal subset start delimiter
 <!ENTITY smile "<graphic file="smile.eps"/>"> Entity declaration
]> Internal subset end delimiter
<reminder> Start of document element
 ⌣ Reference to the entity declared above
 <msg>Smile! It can always get worse.</msg>

</reminder> End of document element

Figure 2-3. Form of the XML declaration

<?xml param1 param2 ... ?>

1 2 3

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Markup and Core Concepts

Parameter names and values are case-sensitive. The names are always lowercase.
Order is important; the version must come before the encoding which must precede
the standalone parameter. Either single or double quotes may be used. Here are
some examples of XML declarations:

<?xml?>

<?xml version="1.0"?>

<?xml version='1.0' encoding='US-ASCII' standalone='yes'?>

<?xml version = '1.0' encoding= 'iso-8859-1' standalone ="no"?>

The Document Type Declaration
There are two reasons why you would want to use a document type declaration. The
first is to define entities or default attribute values. The second is to support valida-
tion, a special mode of parsing that checks grammar and vocabulary of markup. A
validating parser needs to read a list of declarations for element rules before it can
begin to parse. In both cases, you need to make declarations available, and the place
to do that is in the document type declaration section.

Figure 2-4 shows the basic form of the document type declaration. It begins with the
delimiter <!DOCTYPE (1) and ends with the delimiter > (7). Inside, the first part is an ele-
ment name (2), which identifies the type of the document element. Next is an optional
identifier for the document type definition (3), which may be a path to a file on the
system, a URL to a file on the Internet, or some other kind of unique name meaning-
ful to the parser. The last part, enclosed in brackets (4 and 6), is an optional list of
entity declarations (5) called the internal subset. It complements the external docu-
ment type definition which is called the external subset. Together, the internal and
external subsets form a collection of declarations necessary for parsing and validation.

Figure 2-4. Form of the document type declaration

<!DOCTYPE element DTD identifier [

declaration1

declaration2

...

] >

1 2 3 4

5

6 7

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The Document Prolog | 55

System and public identifiers

The DTD identifier supports two methods of identification: system-specific and pub-
lic. A system identifier takes the form shown in Figure 2-5, the keyword SYSTEM (1)
followed by a physical address (3) such as a filesystem path or URI, in quotes (2).

Here is an example with a system identifier. It points to a file called simple.dtd in the
local filesystem.

<!DOCTYPE doc

 SYSTEM "/usr/local/xml/dtds/simple.dtd">

An alternative scheme to system identifiers is the public identifier. Unlike a system
path or URI that can change anytime an administrator feels like moving things
around, a public identifier is never supposed to change, just as a person may move
from one city to another, but her social security number remains the same. The prob-
lem is that so far, not many parsers know what to do with public identifiers, and
there is no single official registry mapping them to physical locations. For that rea-
son, public identifiers are not considered reliable on their own, and must include an
emergency backup system identifier.

Figure 2-6 shows the form of a public identifier. It starts with the keyword PUBLIC

(1), and follows with a character string (3) in quotes (2), and the backup system
identifier (4), also in quotes (2).

Here is an example with a public identifier:

<!DOCTYPE html

 PUBLIC "-//W3C//DTD HTML 3.2//EN"

 "http://www.w3.org/TR/HTML/html.dtd">

Figure 2-5. Form of the system identifier

Figure 2-6. Form of the public identifier

SYSTEM " system identifier "

1 2 3 2

PUBLIC " public identifier "

 " public identifier "

22 4

1 2 23

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Markup and Core Concepts

Declarations

Declarations are pieces of information needed to assemble and validate the docu-
ment. The XML parser first reads declarations from the external subset (given by the
system or public identifier), then reads declarations from the internal subset (the por-
tion in square brackets) in the order they appear. In this chapter, I will only talk
about what goes in the internal subset, leaving the external subset for Chapter 3.

There are several kinds of declarations. Some have to do with validation, describing
what an element may or may not contain (again, I will go over these in Chapter 3).
Another kind is the entity declaration, which creates a named piece of XML that can
be inserted anywhere in the document.

The form of an entity declaration is shown in Figure 2-7. It begins with the delimiter
<!ENTITY (1), is followed by a name (2), then a value or identifier (3), and the closing
delimiter > (4).

The value or identifier portion may be a system identifier or public identifier, using
the same forms shown in Figure 2-5 and Figure 2-6. This associates a name with a
piece of XML in a file outside of the document. That segment of XML becomes an
entity, which is a component of the document that the parser will insert before pars-
ing. For example, this entity declaration creates an entity named chap2 out of the file
ch02.xml:

<!ENTITY chap2 SYSTEM "ch02.xml">

You can insert this entity in the document using an entity reference which takes the
form in Figure 2-8. It consists of the entity name (2), bounded on the left by an
ampersand (1), and on the right by a semicolon (3). You can insert it anywhere in the
document element or one of its descendants. The parser will replace it with its value,
taken from the external resource, before parsing the document.

Figure 2-7. Form of an entity declaration

Figure 2-8. Form of an entity reference

<!ENTITY name identifier or value >

1 2 3 4

& name ;

1 2 3

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Elements | 57

In this example, the entity reference is inserted in the XML inside a book element:

<book><title>My Exciting Book</title>

&chap2;

</book>

Alternatively, an entity declaration may specify an explicit value instead of a system
or public identifier. This takes the form of a quoted string. The string can be mixed
content (any combination of elements and character data). For example, this declara-
tion creates an entity called jobtitle and assigns it the text <jobtitle>Herder of

Cats</jobtitle>:

<!ENTITY jobtitle "<jobtitle>Herder of Cats</jobtitle>">

We’re really just scratching the surface of entities. I’ll cover entities in much greater
depth later in the chapter.

Elements
Elements are the building blocks of XML, dividing a document into a hierarchy of
regions, each serving a specific purpose. Some elements are containers, holding text
or elements. Others are empty, marking a place for some special processing such as
importing a media object. In this section, I’ll describe the rules for how to construct
elements.

Syntax
Figure 2-9 shows the syntax for a container element. It begins with a start tag con-
sisting of an angle bracket (1) followed by a name (2). The start tag may contain
some attributes (3) separated by whitespace, and it ends with a closing angle bracket
(4). After the start tag is the element’s content and then an end tag. The end tag con-
sists of an opening angle bracket and a slash (5), the element’s name again (2), and a
closing bracket (4). The name in the end tag must match the one in the start tag
exactly.

Figure 2-9. Container element syntax

< name attribute1 attribute2 ... >

content

</ name >

1 2 3 4

5 2 4

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Markup and Core Concepts

An empty element is very similar, as seen in Figure 2-10. It starts with an angle
bracket delimiter (1), and contains a name (2) and a number of attributes (3). It is
closed with a slash and a closing angle bracket (4). It has no content, so there is no
need for an end tag.

An attribute defines a property of the element. It associates a name with a value,
which is a string of character data. The syntax, shown in Figure 2-11 is a name (1),
followed by an equals sign (2), and a string (4) inside quotes (3). Two kinds of
quotes are allowed: double (") and single ('). Quote characters around an attribute
value must match.

Element naming must follow the rules of XML names, a generic term in the XML
specification that also applies to names of attributes and some other kinds of
markup. An XML name can contain any alphanumeric characters (a–z, A–Z, and 0–
9), accented characters like ç, or characters from non-Latin scripts like Greek, Ara-
bic, or Katakana. The only punctuation allowed in names are the hyphen (-), under-
score (_) and period (.). The colon (:) is reserved for another purpose, which I will
explain later. Names can only start with a letter, ideograph, or underscore. Names
are case-sensitive, so Para, para, and pArA are three different elements.

The following elements are well-formed:

<to-do>Clean fish tank</to-do>

<street_address>1420 Sesame Street</street_address>

<MP3.name>Where my doggies at?</MP3.name>

<α3/>
<_-_>goofy, but legal</_-_>

These element names are not:

<-item>Bathe the badger</-item>

<2nd-phone-number>785-555-1001</2nd-phone-number>

<notes+comments>Huh?</notes+commments>

Figure 2-10. Empty element syntax

Figure 2-11. Form of an attribute

< name attribute1 attribute2 ... />

1 2 3 4

name = " value "

1 2 3 4 3

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Elements | 59

Technically, there is no limit to the length of an XML name. Practically speaking,
anything over 50 characters is probably too long.

Inserting whitespace characters (tab, newline, and space) inside the tag is fine, as
long as they aren’t between the opening angle bracket and the element name. These
characters are used to separate attributes. They are also often used to make tags
more readable. In the following example, all of the whitespace characters are
allowed:

<boat

 type="trireme"

><crewmember class="rower">Dronicus Laborius</crewmember >

There are a few important rules about the tags of container elements. The names in
the start and end tags must be identical. An end tag has to come after (never before)
the start tag. And both tags have to reside within the same parent element. Violating
the last rule is an error called overlapping. It’s an ambiguous situation where each
element seems to contain the other, as you can see here:

<a>Don't do this!

These untangled elements are okay:

<a>No problemhere

Container elements may contain elements or character data or both. Content with
both characters and elements is called mixed content. For example, here is an ele-
ment with mixed content:

<para>I like to ride my motorcycle

<emphasis>really</emphasis> fast.</para>

Attributes
In the element start tag you can add more information about the element in the form
of attributes. An attribute is a name-value pair. You can use it to add a unique label
to an element, place it in a category, add a Boolean flag, or otherwise associate some
short string of data. In Chapter 1, I used an attribute in the telegram element to set a
priority level.

One reason to use attributes is if you want to distinguish between elements of the
same name. You don’t always want to create a new element for every situation, so an
attribute can add a little more granularity in differentiating between elements. In nar-
rative applications like DocBook or HTML, it’s common to see attributes like class

and role used for this purpose. For example:

<message class="tip">When making crop circles,

push down <emphasis>gently<emphasis> on the stalks to

avoid breaking them.</message>

<message class="warning">Farmers don't like finding people in

their fields at night, so be <emphasis role="bold">very

quiet</emphasis> when making crop circles.</message>

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Markup and Core Concepts

The class attribute might be used by a stylesheet to specify a special typeface or
color. It might format the <message class="warning"> with a thick border and an
icon containing an exclamation point, while the <message class="tip"> gets an icon
of a light bulb and a thin border. The emphasis elements are distinguished in whether
they have an attribute at all. The second does, and its purpose is to override the
default style, whatever that may be.

Another way an attribute can distinguish an element is with a unique identifier, a
string of characters that is unique to one particular element in the document. No
other element may have the same identifier. This gives you a way to select that one
element for special treatment, for cross referencing, excerpting, and so on.

For example, suppose you have a catalog with hundreds of product descriptions.
Each description is inside a product element. You want to create an index of prod-
ucts, with one line per product. How do you refer to a particular product among
hundreds? The answer is to give each a uniquely identifying label:

<product id="display-15-inch-apple">

 ...

</product>

<product id="display-15-inch-sony">

 ...

</product>

<product id="display-15-inch-ibm">

 ...

</product>

There is no limit to how many attributes an element can have, as long as no two
attributes have the same name. Here’s an example of an element start tag with three
attributes:

<kiosk music="bagpipes" color="red" id="page-81527">

This example is not allowed:

<!-- Wrong -->

<team person="sue" person="joe" person="jane">

To get around this limitation, you could use one attribute to hold all the values:

<team persons="sue joe jane">

You could also use attributes with different names:

<team person1="sue" person2="joe" person3="jane">

Or use elements instead:

<team>

 <person>sue</person>

 <person>joe</person>

 <person>jane</person>

</team>

In a DTD, attributes can be declared to be of certain types. An attribute can have an
enumerated value, meaning that the value must be one of a predefined set. Or it may

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Elements | 61

have a type that registers it as a unique identifier (no other element can have the
same value). It may be an identifier reference type, requiring that another element
somewhere has an identifier attribute that matches. A validating parser will check all
of these attribute types and report deviations from the DTD. I’ll have more to say
about declaring attribute types in Chapter 4.

Some attribute names are reserved in XML. Typically, they start with
the prefix “xml,” such as xmlns. To avoid a conflict, choose names that
don’t start with those letters.

Namespaces
Namespaces are a mechanism by which element and attribute names can be assigned
to groups. They are most often used when combining different vocabularies in the
same document, as I did in Chapter 1. Look at that example, and you’ll see attributes
in some elements like this one:

<math xmlns="http://www.w3.org/1998/Math/MathML">

Example 2-2 is another case. The part-catalog element contains two namespaces
which are declared by the attributes xmlns:nw and xmlns. The elements inside part-

catalog and their attributes belong to one or the other namespace. Those in the first
namespace can be identified by the prefix nw:.

The attributes of part-catalog are called namespace declarations. The general form of
a namespace declaration is illustrated in Figure 2-12. It starts with the keyword
xmlns: (1) is followed by a namespace prefix (2), an equals sign (3), and a namespace
identifier (5) in quotes (4).

Example 2-2. Document with two namespaces

<part-catalog

 xmlns:nw="http://www.nutware.com/"

 xmlns="http://www.bobco.com/"

>

 <nw:entry nw:number="1327">

 <nw:description>torque-balancing hexnut</nw:description>

 </nw:entry>

 <part id="555">

 <name>type 4 wingnut</name>

 </part>

</part-catalog>

Figure 2-12. Namespace declaration syntax

xmlns: name = " URI "

1 2 443 5

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Markup and Core Concepts

Avoid using xml as a namespace prefix, as it is used in reserved
attributes like xml:space.

In a special form of the declaration, the colon and namespace prefix are left out, cre-
ating an implicit (unnamed) namespace. The second namespace declared in the
example above is an implicit namespace. part-catalog and any of its descendants
without the namespace prefix nw: belong to the implicit namespace.

Namespace identifiers are, by convention, assigned to the URL subset
of URIs, not the more abstract URNs. This is not a requirement, how-
ever. The XML processor doesn’t actually look up any information
located at that site. The site may not even exist. So why use a URL?

The namespace has to be assigned some kind of unique identifier.
URLs are unique. They often contain information about the company
or organization. So it makes a good candidate.

Still, many have made the point that URLs are not really meant to be
used as identifiers. Resources are moved around often, and URLs
change. But since no one has found a better method yet, it looks like
namespace assignments to URLs is here to stay.

To include an element or attribute in a namespace other than the implicit
namespace, you must use the form in Figure 2-13. This is called a fully qualified
name. To the left of the colon (2) is the namespace prefix (1), and to the right is the
local name (3).

Namespaces only affect a limited area in the document. The element containing the
declaration and all of its descendants are in the scope of the namespace. The ele-
ment’s siblings and ancestors are not. It is also possible to override a namespace by
creating another one inside it with the same name. In the following example, there
are two namespaces named flavor, yet the chocolate-shell element is in a different
namespace from the element chewy-center. The element flavor:walnut is in the lat-
ter namespace.

<flavor:chocolate-shell

 xmlns:flavor="http://www.deliciouscandy.com/chocolate/">

 <flavor:chewy-center

 xmlns:flavor="http://www.deliciouscandy.com/caramel/">

 <flavor:walnut/>

 </flavor:chewy>

</flavor:chocolate-shell>

Figure 2-13. Fully qualified name

namespace prefix : local name

321

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Elements | 63

How an XML processor reacts when entering a new namespace depends on the
application. For a web document, it may trigger a shift in processing from one kind
(e.g., normal web text) to another (e.g., math formulae). Or, as in the case of XSLT,
it may use namespaces to sort instructions from data where the former is kind of like
a meta-markup.

Namespaces are a wonderful addition to XML, but because they were added after the
XML specification, they’ve created a rather tricky problem. Namespaces do not get
along with DTDs. If you want to test the validity of a document that uses non-
implicit namespaces, chances are the test will fail. This is because there is no way to
write a DTD to allow a document to use namespaces. DTDs want to constrain a doc-
ument to a fixed set of elements, but namespaces open up documents to an unlim-
ited number of elements. The only way to reconcile the two would be to declare
every fully qualified name in the DTD which would not be practical. Until a future
version of XML fixes this incompatibility, you will just have to give up validating
documents that use multiple namespaces.

Whitespace
You’ll notice in my examples, I like to indent elements to clarify the structure of the
document. Spaces, tabs, and newlines (collectively called whitespace characters) are
often used to make a document more readable to the human eye. Take out this visual
padding and your eyes will get tired very quickly. So why not add some spaces here
and there where it will help?

One important issue is how whitespace should be treated by XML software. At the
parser level, whitespace is always passed along with all the other character data to
the application level of the program. However, some programs may then normalize
the space. This process strips out whitespace in element-only content, and in the
beginning and end of mixed content. It also collapses a sequence of whitespace char-
acters into a single space.

If you want to prevent a program from removing any whitespace characters from an
element, you can give it a hint in the form of the xml:space attribute. If you set this
attribute to preserve, XML processing software is supposed to honor the request by
leaving all whitespace characters intact.

Consider this XML-encoded haiku:

<poem xml:space="preserve">

A wind shakes the trees,

 An empty sound of sadness.

 The file is not here.

</poem>

I took some poetic license by putting a bunch of spaces in there. (Hey, it’s art!) So
how do I keep the XML processor from throwing out the extra space in its normal-
ization process? I gave the poem element an attribute named xml:space, and set its

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: Markup and Core Concepts

value to preserve. In Chapter 4, I’ll show you how to make this the standard behav-
ior for an element, by making the attribute implicit in the element declaration.

It is not necessary to declare a namespace for xml:space. This attribute
is built into the XML specification and all XML processors should
recognize it.

Some parsers, given a DTD for a document, will make reasonably smart guesses
about which elements should preserve whitespace and which should not. Elements
that are declared in a DTD to allow mixed content should preserve whitespace, since
it may be part of the content. Elements not declared to allow text should have
whitespace dropped, since any space in there is only to clarify the markup. How-
ever, you can’t always rely on a parser to act correctly, so using the xml:space

attribute is the safest option.

Trees
Elements can be represented graphically as upside-down, tree-like structures. The
outermost element, like the trunk of a tree, branches out into smaller elements which
in turn branch into other elements until the very innermost content—empty ele-
ments and character data—is reached. You can think of the character data as leaves
of the tree. Figure 2-14 shows the telegram document drawn as a tree.

Since every XML document has only one possible tree, the diagram acts like a finger-
print, uniquely identifying the document. It’s this unambiguous structure that makes
XML so useful in containing data. The arboreal metaphor is also useful in thinking
about how you would “move” through a document. Documents are parsed from
beginning to end, naturally, which happens to correspond to a means of traversing a
tree called depth-first searching. You start at the root, then move down the first
branch to an element, take the first branch from there, and so on to the leaves. Then
you backtrack to the last fork and take the next branch, as shown in Figure 2-15.

Let me give you some terminology about XML trees. Every point in a tree—be it an
element, text, or something else—is called a node. This borrows from graph theory
in mathematics, where a tree is a particular type of graph (directed, non-cyclic). Any
branch of the tree can be snapped off and thought of as a tree too, just as you can
plant the branch of a willow tree to make a new willow tree.* Branches of trees are
often called subtrees or just trees. Collections of trees are appropriately called groves.

An XML tree or subtree (or subsubtree, or subsubsubtree...) must adhere to the
rules of well-formedness. In other words, any branch you pluck out of a document
could be run through an XML parser, which wouldn’t know or care that it wasn’t a

* Which is why you should never make fenceposts out of willow wood.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Elements | 65

complete document. But a grove (group of adjacent trees) is not well-formed XML.
In order to be well-formed, all of the elements must be contained inside just one, the
document element.

To describe elements in relation to one another, we use genealogical terms. Imagine
that elements are like single-celled organisms, reproducing asexually. You can think
of an element as the parent of the nodes it contains, known as its children. So the
root of any tree is the progenitor of a whole family with numerous descendants. Like-
wise, a node may have ancestors and siblings. Siblings to the left (appearing earlier in

Figure 2-14. A document tree

Figure 2-15. Depth-first search

to from subject graphic

telegram

toSarah
Bellum

Colonel
Timeslip

Robot-sitting
instructions

name villain

Zonky

emphasis

twice a
day

Dr. Indigo
Riceway

while I'm away.
He needs to be
recharged

and if he starts to
get cranky, give
him a quart of oil.
I'll be back soon,
after I've tracked
down that evil
mastermind

.Thanks for
watching my
robot pal

message

1

5 62

3 4 7

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: Markup and Core Concepts

the document) are preceding siblings while those to the right are following siblings.
These relationships are illustrated in Figure 2-16.

The tree model of XML is also important because it represents the way XML is usu-
ally stored in computer memory. Each element and region of text is packaged in a
cell with pointers to children and parents, and has an object-oriented interface with
which to manipulate data. This system is convenient for developers because actions,
like moving document parts around and searching for text, are easier and more effi-
cient when separated into tree structures.

Entities
Entities are placeholders in XML. You declare an entity in the document prolog or in
a DTD, and you can refer to it many times in the document. Different types of enti-
ties have different uses. You can substitute characters that are difficult or impossible
to type with character entities. You can pull in content that lives outside of your doc-
ument with external entities. And rather than type the same thing over and over
again, such as boilerplate text, you can instead define your own general entities.

Figure 2-17 shows the different kinds of entities and their roles. In the family tree of
entity types, the two major branches are parameter entities and general entities.
Parameter entities are used only in DTDs, so I’ll talk about them later, in Chapter 4.
This section will focus on the other type, general entities.

An entity consists of a name and a value. When an XML parser begins to process a
document, it first reads a series of declarations, some of which define entities by asso-
ciating a name with a value. The value is anything from a single character to a file of
XML markup. As the parser scans the XML document, it encounters entity refer-
ences, which are special markers derived from entity names. For each entity

Figure 2-16. Genealogical concepts

node

parent

siblingsibling

child child

ancestors

descendants

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Entities | 67

reference, the parser consults a table in memory for something with which to replace
the marker. It replaces the entity reference with the appropriate replacement text or
markup, then resumes parsing just before that point, so the new text is parsed too.
Any entity references inside the replacement text are also replaced; this process
repeats as many times as necessary.

Recall from “The Document Type Declaration” earlier in this chapter that an entity
reference consists of an ampersand (&), the entity name, and a semicolon (;). The fol-
lowing is an example of a document that declares three general entities and refer-
ences them in the text:

<?xml version="1.0"?>

<!DOCTYPE message SYSTEM "/xmlstuff/dtds/message.dtd"

[

 <!ENTITY client "Mr. Rufus Xavier Sasperilla">

 <!ENTITY agent "Ms. Sally Tashuns">

 <!ENTITY phone "<number>617-555-1299</number>">

]>

<message>

<opening>Dear &client;</opening>

<body>We have an exciting opportunity for you! A set of

ocean-front cliff dwellings in Piñata, Mexico, have been

renovated as time-share vacation homes. They're going fast! To

reserve a place for your holiday, call &agent; at ☎.

Hurry, &client;. Time is running out!</body>

</message>

The entities &client;, &agent;, and ☎ are declared in the internal subset of this
document (discussed in “The Document Type Declaration”) and referenced in the

Figure 2-17. Entity types

parameter

internal

ENTITIES

general

mixed-content

external

unparsed

namednumberedpredefined

character

internal external

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: Markup and Core Concepts

<message> element. A fourth entity, ñ, is a numbered character entity that repre-
sents the character ñ. This entity is referenced but not declared; no declaration is
necessary because numbered character entities are implicitly defined in XML as refer-
ences to characters in the current character set. (For more information about charac-
ter sets, see Chapter 9.) The XML parser simply replaces the entity with the correct
character.

The previous example looks like this with all the entities resolved:

<?xml version="1.0"?>

<!DOCTYPE message SYSTEM "/xmlstuff/dtds/message.dtd">

<message>

<opening>Dear Mr. Rufus Xavier Sasperilla</opening>

<body>We have an exciting opportunity for you! A set of

ocean-front cliff dwellings in Piñata, Mexico, have been

renovated as time-share vacation homes. They're going fast! To

reserve a place for your holiday, call Ms. Sally Tashuns at

<number>617-555-1299</number>.

Hurry, Mr. Rufus Xavier Sasperilla. Time is running out!</body>

</message>

All entities (besides predefined ones, which I’ll describe in a moment) must be
declared before they are used in a document. Two acceptable places to declare them
are in the internal subset, which is ideal for local entities, and in an external DTD,
which is more suitable for entities shared between documents. If the parser runs
across an entity reference that hasn’t been declared, either implicitly (a predefined
entity) or explicitly, it can’t insert replacement text in the document because it
doesn’t know what to replace the entity with. This error prevents the document from
being well-formed.

Character Entities
Entities that contain a single character are called, naturally enough, character enti-
ties. These fall into a few groups:

Predefined character entities
Some characters cannot be used in the text of an XML document because they
conflict with the special markup delimiters. For example, angle brackets (<>) are
used to delimit element tags. The XML specification provides the following pre-
defined character entities, so you can express these characters safely.

Entity Value

amp &

apos '

gt >

lt <

quot "

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Entities | 69

Numeric references
XML supports Unicode, a huge character set with tens of thousands of different
symbols, letters, and ideograms. You should be able to use any Unicode charac-
ter in your document. It isn’t easy, however, to enter a nonstandard character
from a keyboard with less than 100 keys, or to represent one in a text-only edi-
tor display. One solution is to use a numbered character reference which refers to
the character by its number in the Unicode character set.

The number in the entity name can be expressed in decimal or hexadecimal for-
mat. Figure 2-18 shows the form of a numeric character entity reference with a
decimal number, consisting of the delimiter &# (1), the number (2), and a semi-
colon (3).

Figure 2-19 shows another form using a hexadecimal number. The difference is
that the start delimiter includes the letter “x.”

For example, a lowercase c with a cedilla (ç) is the 231st Unicode character. It
can be represented in decimal as ç or in hexadecimal as ç. Note that
the hexadecimal version is distinguished with an x as the prefix to the number.
Valid characters are #x9, #xA, #xD, #x20 through #xD7FF, #xE000 through #xFFFD,
and #x10000 through #x10FFFF. Since not all hexadecimal numbers map to valid
characters, this is not a continuous range. I will discuss character sets and encod-
ings in more detail in Chapter 9.

Named character entities
The problem with numbered character references is that they’re hard to remem-
ber: you need to consult a table every time you want to use a special character.
An easier way to remember them is to use mnemonic entity names. These named
character entities use easy-to-remember names like Þ, which stands for the
Icelandic capital thorn character (⊂|).

Figure 2-18. Numeric character reference (decimal)

Figure 2-19. Numeric character entity reference (hexadecimal)

&# decimal number ;

1 32

&#x hexadecimal number ;

321

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: Markup and Core Concepts

Unlike the predefined and numeric character entities, you do have to declare
named character entities. In fact, they are technically no different from other
general entities. Nevertheless, it’s useful to make the distinction, because large
groups of such entities have been declared in DTD modules that you can use in
your document. An example is ISO-8879, a standardized set of named character
entities including Latin, Greek, Nordic, and Cyrillic scripts, math symbols, and
various other useful characters found in European documents.

Mixed-Content Entities
Entity values aren’t limited to a single character, of course. The more general mixed-
content entities have values of unlimited length and can include markup as well as
text. These entities fall into two categories: internal and external. For internal enti-
ties, the replacement text is defined in the entity declaration; for external entities, it is
located in another file.

Internal entities

Internal mixed-content entities are most often used to stand in for oft-repeated
phrases, names, and boilerplate text. Not only is an entity reference easier to type
than a long piece of text, but it also improves accuracy and maintainability, since you
only have to change an entity once for the effect to appear everywhere. The follow-
ing example proves this point:

<?xml version="1.0"?>

<!DOCTYPE press-release SYSTEM "http://www.dtdland.org/dtds/reports.dtd"

[

 <!ENTITY bobco "Bob's Bolt Bazaar, Inc.">

]>

<press-release>

<title>&bobco; Earnings Report for Q3</title>

<par>The earnings report for &bobco; in fiscal

quarter Q3 is generally good. Sales of &bobco; bolts increased 35%

over this time a year ago.</par>

<par>&bobco; has been supplying high-quality bolts to contractors

for over a century, and &bobco; is recognized as a leader in the

construction-grade metal fastener industry.</par>

</press-release>

The entity &bobco; appears in the document five times. If you want to change some-
thing about the company name, you only have to enter the change in one place. For
example, to make the name appear inside a companyname element, simply edit the
entity declaration:

<!ENTITY bobco

 "<companyname>Bob's Bolt Bazaar, Inc.</companyname>">

When you include markup in entity declarations, be sure not to use the predefined
character entities (e.g., < and >) to escape the markup. The parser knows to

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Entities | 71

read the markup as an entity value because the value is quoted inside the entity dec-
laration. Exceptions to this are the quote-character entity " and the single-quote
character entity '. If they would conflict with the entity declaration’s value
delimiters, then use the predefined entities, e.g., if your value is in double quotes and
you want it to contain a double quote.

Entities can contain entity references, as long as the entities being referenced have
been declared previously. Be careful not to include references to the entity being
declared, or you’ll create a circular pattern that may get the parser stuck in a loop.
Some parsers will catch the circular reference, but it is an error.

External entities

Sometimes you may need to create an entity for such a large amount of mixed con-
tent that it is impractical to fit it all inside the entity declaration. In this case, you
should use an external entity, an entity whose replacement text exists in another file.
External entities are useful for importing content that is shared by many documents,
or that changes too frequently to be stored inside the document. They also make it
possible to split a large, monolithic document into smaller pieces that can be edited
in tandem and that take up less space in network transfers.

External entities effectively break a document into multiple physical parts. However,
all that matters to the XML processor is that the parts assemble into a perfect whole.
That is, all the parts in their different locations must still conform to the well-
formedness rules. The XML parser stitches up all the pieces into one logical docu-
ment; with the correct markup, the physical divisions should be irrelevant to the
meaning of the document.

External entities are a linking mechanism. They connect parts of a document that
may exist on other systems, far across the Internet. The difference from traditional
XML links (XLinks) is that for external entities the XML processor must insert the
replacement text at the time of parsing.

External entities must always be declared so the parser knows where to find the
replacement text. In the following example, a document declares the three external
entities &part1;, &part2;, and &part3; to hold its content:

<?xml version="1.0"?>

<!DOCTYPE doc SYSTEM "http://www.dtds-r-us.com/generic.dtd"

[

 <!ENTITY part1 SYSTEM "p1.xml">

 <!ENTITY part2 SYSTEM "p2.xml">

 <!ENTITY part3 SYSTEM "p3.xml">

]>

<longdoc>

 &part1;

 &part2;

 &part3;

</longdoc>

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 2: Markup and Core Concepts

As shown in Figure 2-20, the file at the top of the pyramid, which we might call the
“master file,” contains the document declarations and external entity references. The
other files are subdocuments—they contain XML, but are not documents in their
own right. You could not legally insert document prologs in them. Each may con-
tain more than one XML tree. Though you can’t validate them individually (you can
only validate a complete document), any errors in a subdocument will affect the
whole. External entities don’t shield you from parse errors.

Whenever possible, make each subdocument contain at most one
XML tree. While you can’t validate a subdocument on its own, you
can usually perform a well-formedness check if it has no more than
one tree. The parser will think it’s looking at a lone document with-
out a prolog. This makes it a lot easier to manage a large document,
especially if you have different people working on it at the same time.
(This gets tricky if your subdocument uses entities defined in the main
document, however.)

The syntax just shown for declaring an external entity uses the keyword SYSTEM fol-
lowed by a quoted string containing a filename. This string is called a system identi-
fier and is used to identify a resource by location. The quoted string is actually a
URL, so you can include files from anywhere on the Internet. For example:

<!ENTITY catalog SYSTEM "http://www.bobsbolts.com/catalog.xml">

The system identifier suffers from the same drawback as all URLs: if the referenced
item is moved, the link breaks. To avoid that problem, you can use a public identifier

Figure 2-20. Document with external entities

p1.xml

p2.xml

p3.xml

prolog

&part1;

<longdoc>

&part2;

&part3;

</longdoc>

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Entities | 73

in the entity declaration. In theory, a public identifier will endure any location shuf-
fling and still fetch the correct resource. For example:

<!ENTITY faraway PUBLIC "-//BOB//FILE Catalog//EN"

 "http://www.bobsbolts.com/catalog.xml">

Of course, for this to work, the XML processor has to know how to use public iden-
tifiers, and it must be able to find a catalog that maps them to actual locations. In
addition, there’s no guarantee that the catalog is up to date. A lot can go wrong. Per-
haps for this reason, the public identifier must be accompanied by a system identi-
fier (here, "http://www.bobsbolts.com/catalog.xml"). If the XML processor for some
reason can’t handle the public identifier, it falls back on the system identifier. Most
web browsers in use today can’t deal with public identifiers, so including a backup is
a good idea.

The W3C has been working on an alternative to external parsed enti-
ties, called XInclude. For details, see http://www.w3.org/TR/xinclude/.

Unparsed Entities
The last kind of entity discussed in this chapter is the unparsed entity. This kind of
entity holds content that should not be parsed because it contains something other
than text or XML and would likely confuse the parser. The only place from which
unparsed entities can be referred to is in an attribute value. They are used to import
graphics, sound files, and other noncharacter data.

The declaration for an unparsed entity looks similar to that of an external entity,
with some additional information at the end. For example:

<!DOCTYPE doc [

 <!ENTITY mypic SYSTEM "photos/erik.gif" NDATA GIF>

]>

<doc>

 <para>Here's a picture of me:</para>

 <graphic src="&mypic;" />

</doc>

This declaration differs from an external entity declaration in that there is an NDATA

keyword following the system path information. This keyword tells the parser that
the entity’s content is in a special format, or notation, other than the usual parsed
mixed content. The NDATA keyword is followed by a notation identifier that specifies
the data format. In this case, the entity is a graphic file encoded in the GIF format, so
the word GIF is appropriate.

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 2: Markup and Core Concepts

Miscellaneous Markup
Rounding out the list of markup objects are comments, processing instructions, and
CDATA sections. They all have one thing in common: they shield content from the
parser in some fashion. Comments keep text from ever getting to the parser. CDATA
sections turn off the tag resolution, and processing instructions target specific
processors.

Comments
Comments are notes in the document that are not interpreted by the XML proces-
sor. If you’re working with other people on the same files, these messages can be
invaluable. They can be used to identify the purpose of files and sections to help nav-
igate a cluttered document, or simply to communicate with each other.

Figure 2-21 shows the form of a comment. It starts with the delimiter <!-- (1) and
ends with the delimiter --> (3). Between these delimiters goes the comment text (2)
which can be just about any kind of text you want, including spaces, newlines, and
markup. The only string not allowed inside a comment is two or more dashes in suc-
cession, since the parser would interpret that string as the end of the comment.

Comments can go anywhere in your document except before the XML declaration
and inside tags. The XML processor removes them completely before parsing begins.
So this piece of XML:

<p>The quick brown fox jumped<!-- test -->over the lazy dog.

The quick brown <!-- test --> fox jumped over the lazy dog. The<!--

test

-->quick brown fox

jumped over the lazy dog.</p>

will look like this to the parser:

<p>The quick brown fox jumpedover the lazy dog.

The quick brown fox jumped over the lazy dog. Thequick brown fox

jumped over the lazy dog.</p>

Figure 2-21. Comment syntax

<!-- comment text -->

321

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Miscellaneous Markup | 75

Since comments can contain markup, they can be used to “turn off” parts of a docu-
ment. This is valuable when you want to remove a section temporarily, keeping it in
the file for later use. In this example, a region of code is commented out:

<p>Our store is located at:</p>

<!--

<address>59 Sunspot Avenue</address>

-->

<address>210 Blather Street</address>

When using this technique, be careful not to comment out any comments, i.e., don’t
put comments inside comments. Since they contain double dashes in their delimit-
ers, the parser will complain when it gets to the inner comment.

CDATA Sections
If you mark up characters frequently in your text, you may find it tedious to use the
predefined entities <, >, and &. They require typing and are generally hard
to read in the markup. There’s another way to include lots of forbidden characters,
however: the CDATA section.

CDATA is an acronym for “character data,” which just means “not markup.” Essen-
tially, you’re telling the parser that this section of the document contains no markup
and should be treated as regular text. The only thing that cannot go inside a CDATA
section is the ending delimiter (]]>).

A CDATA section begins with the nine-character delimiter <![CDATA[(1), and it ends
with the delimiter]]> (3). The content of the section (2) may contain markup char-
acters (<, >, and &), but they are ignored by the XML processor (see Figure 2-22).

Here’s an example of a CDATA section in action:

<para>Then you can say "<![CDATA[if (&x < &y)]]>" and be done

with it.</para>

This is effectively the same as:

<para>Then you can say "if (&x < &y)" and be done

with it.</para>

Figure 2-22. CDATA section syntax

<![CDATA[unparsed character data]]>

321

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 2: Markup and Core Concepts

CDATA sections are convenient for large swaths of text that contains a lot of forbid-
den characters. However, the very thing that makes them useful can also be a prob-
lem. You will not be able to use any elements or attributes inside the marked region.
If that’s a problem for you, then you would probably be better off using character
entity references or entities.

You can’t nest CDATA sections, because the closing]]> of the nested
CDATA section will be treated as the end of the first CDATA section.
Because of its role in CDATA sections, you also can’t use an
unescaped]]> anywhere in XML document text.

Processing Instructions
Presentational information should be kept out of a document whenever possible.
Still, there may be times when you don’t have any other option, for example, if you
need to store page numbers in the document to facilitate generation of an index. This
information applies only to a specific XML processor and may be irrelevant or mis-
leading to others. The prescription for this kind of information is a processing instruc-
tion. It is a container for data that is targeted toward a specific XML processor.

Processing instructions (PIs) contain two pieces of information: a target keyword and
some data. The parser passes processing instructions up to the next level of process-
ing. If the processing instruction handler recognizes the target keyword, it may
choose to use the data; otherwise, the data is discarded. How the data will help pro-
cessing is up to the developer.

A PI (shown in Figure 2-23) starts with a two-character delimiter <? (1), followed by a
target (2), an optional string of characters (3) that is the data portion of the PI, and a
closing delimiter ?> (4).

“Funny,” you say, “PIs look a lot like the XML declaration.” You’re right: the XML
declaration can be thought of as a processing instruction for all XML processors* that
broadcast general information about the document, though the specification defines
it as a different thing.

Figure 2-23. Processing instruction syntax

* This syntactic trick allows XML documents to be processed by older SGML systems; they simply treat the
XML declaration as another processing instruction, ignoring it since it obviously isn’t meant for them.

<? target data ?>

1 2 3 4

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Miscellaneous Markup | 77

The target is a keyword that an XML processor uses to determine whether the data is
meant for it or not. The keyword doesn’t necessarily mean anything, such as the
name of the software that will use it. More than one program can use a PI, and a sin-
gle program can accept multiple PIs. It’s sort of like posting a message on a wall say-
ing, “The party has moved to the green house,” and people interested in the party
will follow the instructions, while those who aren’t interested won’t.

The PI can contain any data except the combination ?>, which would be interpreted
as the closing delimiter. Here are some examples of valid PIs:

<?flubber pg=9 recto?>

<?thingie?>

<?xyz stop: the presses?>

If there is no data string, the target keyword itself can function as the data. A forced
line break is a good example. Imagine that there is a long section heading that
extends off the page. Rather than relying on an automatic formatter to break the title
just anywhere, we want to force it to break in a specific place.

Here is what a forced line break would look like:

<title>The Confabulation of Branklefitzers <?lb?>in a Portlebunky

Frammins <?lb?>Without Denaculization of <?lb?>Crunky Grabblefooties

</title>

Now you know all the ins and outs of markup. You can read and understand any
XML document as if you were a living XML parser. But it still may not be clear to
you why things are marked up as they are, or how to mark up a bunch of data. In the
next chapter, I’ll cover these issues as we look at the fascinating topic of data
modeling.

