
 PDF by Hans Home Collection

PHP Tutorial

PHP is a powerful server-side scripting language for creating dynamic and interactive
websites.

PHP is the widely-used, free, and efficient alternative to competitors such as Microsoft's
ASP. PHP is perfectly suited for Web development and can be embedded directly into
the HTML code.

The PHP syntax is very similar to Perl and C. PHP is often used together with Apache
(web server) on various operating systems. It also supports ISAPI and can be used
with Microsoft's IIS on Windows.

Introduction to PHP

A PHP file may contain text, HTML tags and scripts. Scripts in a PHP file are executed on
the server.

What You Should Already Know

Before you continue you should have a basic understanding of the following:

• HTML / XHTML
• Some scripting knowledge

If you want to study these subjects first, find the tutorials on our Home page.

What is PHP?

• PHP stands for PHP: Hypertext Preprocessor
• PHP is a server-side scripting language, like ASP
• PHP scripts are executed on the server
• PHP supports many databases (MySQL, Informix, Oracle, Sybase, Solid, PostgreSQL,

Generic ODBC, etc.)
• PHP is an open source software (OSS)
• PHP is free to download and use

What is a PHP File?

• PHP files may contain text, HTML tags and scripts
• PHP files are returned to the browser as plain HTML
• PHP files have a file extension of ".php", ".php3", or ".phtml"

What is MySQL?

• MySQL is a database server
• MySQL is ideal for both small and large applications
• MySQL supports standard SQL
• MySQL compiles on a number of platforms
• MySQL is free to download and use

 PDF by Hans Home Collection

PHP + MySQL

• PHP combined with MySQL are cross-platform (means that you can develop in Windows
and serve on a Unix platform)

Why PHP?

• PHP runs on different platforms (Windows, Linux, Unix, etc.)
• PHP is compatible with almost all servers used today (Apache, IIS, etc.)
• PHP is FREE to download from the official PHP resource: www.php.net
• PHP is easy to learn and runs efficiently on the server side

Where to Start?

• Install an Apache server on a Windows or Linux machine
• Install PHP on a Windows or Linux machine
• Install MySQL on a Windows or Linux machine

PHP Installation

What do You Need?

This tutorial will not explain how to install PHP, MySQL, or Apache Server.

If your server supports PHP - you don't need to do anything! You do not need to compile anything
or install any extra tools - just create some .php files in your web directory - and the server will
parse them for you. Most web hosts offer PHP support.

However, if your server does not support PHP, you must install PHP. Below is a link to a good
tutorial from PHP.net on how to install PHP5:

http://www.php.net/manual/en/install.php

Download PHP

Download PHP for free here: http://www.php.net/downloads.php

Download MySQL Database

Download MySQL for free here: http://www.mysql.com/downloads/index.html

Download Apache Server

Download Apache for free here: http://httpd.apache.org/download.cgi

PHP Syntax

You cannot view the PHP source code by selecting "View source" in the browser - you
will only see the output from the PHP file, which is plain HTML. This is because the
scripts are executed on the server before the result is sent back to the browser.

 PDF by Hans Home Collection

Basic PHP Syntax

A PHP scripting block always starts with <?php and ends with ?>. A PHP scripting block can be
placed anywhere in the document.

On servers with shorthand support enabled you can start a scripting block with <? and end with
?>.

However, for maximum compatibility, we recommend that you use the standard form (<?php)
rather than the shorthand form.

<?php
?>

A PHP file normally contains HTML tags, just like an HTML file, and some PHP scripting code.

Below, we have an example of a simple PHP script which sends the text "Hello World" to the
browser:

<html>
<body>
<?php
echo "Hello World";
?>
</body>
</html>

Each code line in PHP must end with a semicolon. The semicolon is a separator and is used to
distinguish one set of instructions from another.

There are two basic statements to output text with PHP: echo and print. In the example above
we have used the echo statement to output the text "Hello World".

Comments in PHP

In PHP, we use // to make a single-line comment or /* and */ to make a large comment block.

<html>
<body>
<?php
//This is a comment
/*
This is
a comment
block
*/
?>
</body>
</html>

PHP Variables

Variables are used for storing values, such as numbers, strings or function results, so
that they can be used many times in a script.

 PDF by Hans Home Collection

Variables in PHP

Variables are used for storing a values, like text strings, numbers or arrays.

When a variable is set it can be used over and over again in your script

All variables in PHP start with a $ sign symbol.

The correct way of setting a variable in PHP:

$var_name = value;

New PHP programmers often forget the $ sign at the beginning of the variable. In that case it will
not work.

Let's try creating a variable with a string, and a variable with a number:

<?php
$txt = "Hello World!";
$number = 16;
?>

PHP is a Loosely Typed Language

In PHP a variable does not need to be declared before being set.

In the example above, you see that you do not have to tell PHP which data type the variable is.

PHP automatically converts the variable to the correct data type, depending on how they are set.

In a strongly typed programming language, you have to declare (define) the type and name of
the variable before using it.

In PHP the variable is declared automatically when you use it.

Variable Naming Rules

• A variable name must start with a letter or an underscore "_"
• A variable name can only contain alpha-numeric characters and underscores (a-Z, 0-9,

and _)
• A variable name should not contain spaces. If a variable name is more than one word, it

should be separated with underscore ($my_string), or with capitalization ($myString)

PHP String
A string variable is used to store and manipulate a piece of text.

Strings in PHP

String variables are used for a value that contains character strings.

 PDF by Hans Home Collection

In this tutorial we are going to look at some of the most common functions and operators used to
manipulate strings in PHP.

After we create a string we can manipulate it. A string can be used directly in a function or it can
be stored in a variable.

Below, the PHP script assigns the string "Hello World" to a string variable called $txt:

<?php
$txt="Hello World";
echo $txt;
?>

The output of the code above will be:

Hello World

Now, lets try to use some different functions and operators to manipulate our string.

The Concatenation Operator

There is only one string operator in PHP.

The concatenation operator (.) is used to put two string values together.

To concatenate two variables together, use the dot (.) operator:

<?php
$txt1="Hello World";
$txt2="1234";
echo $txt1 . " " . $txt2;
?>

The output of the code above will be:

Hello World 1234

If we look at the code above you see that we used the concatenation operator two times. This is
because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty space, to
separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":

<?php
echo strlen("Hello world!");
?>

 PDF by Hans Home Collection

The output of the code above will be:

12

The length of a string is often used in loops or other functions, when it is important to know when
the string ends. (i.e. in a loop, we would want to stop the loop after the last character in the
string)

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If no
match is found, it will return FALSE.

Let's see if we can find the string "world" in our string:

<?php
echo strpos("Hello world!","world");
?>

The output of the code above will be:

6

As you see the position of the string "world" in our string is position 6. The reason that it is 6, and
not 7, is that the first position in the string is 0, and not 1.

Complete PHP String Reference

For a complete reference of all string functions, go to our complete PHP String Reference.

The reference contains a brief description and examples of use for each function

PHP String Functions

PHP String Introduction

The string functions allow you to manipulate strings.

Installation

The string functions are part of the PHP core. There is no installation needed to use these
functions.

PHP String Functions

PHP: indicates the earliest version of PHP that supports the function.

 PDF by Hans Home Collection

Function Description PHP
addcslashes() Returns a string with backslashes in front of the

specified characters
4

addslashes() Returns a string with backslashes in front of predefined
characters

3

bin2hex() Converts a string of ASCII characters to hexadecimal
values

3

chop() Alias of rtrim() 3
chr() Returns a character from a specified ASCII value 3
chunk_split() Splits a string into a series of smaller parts 3
convert_cyr_string() Converts a string from one Cyrillic character-set to

another
3

convert_uudecode() Decodes a uuencoded string 5
convert_uuencode() Encodes a string using the uuencode algorithm 5
count_chars() Returns how many times an ASCII character occurs

within a string and returns the information
4

crc32() Calculates a 32-bit CRC for a string 4
crypt() One-way string encryption (hashing) 3
echo() Outputs strings 3
explode() Breaks a string into an array 3
fprintf() Writes a formatted string to a specified output stream 5
get_html_translation_table() Returns the translation table used by

htmlspecialchars() and htmlentities()
4

hebrev() Converts Hebrew text to visual text 3
hebrevc() Converts Hebrew text to visual text and new lines (\n)

into

3

html_entity_decode() Converts HTML entities to characters 4
htmlentities() Converts characters to HTML entities 3
htmlspecialchars_decode() Converts some predefined HTML entities to characters 5
htmlspecialchars() Converts some predefined characters to HTML entities 3
implode() Returns a string from the elements of an array 3
join() Alias of implode() 3
levenshtein() Returns the Levenshtein distance between two strings 3
localeconv() Returns locale numeric and monetary formatting

information
4

ltrim() Strips whitespace from the left side of a string 3
md5() Calculates the MD5 hash of a string 3
md5_file() Calculates the MD5 hash of a file 4
metaphone() Calculates the metaphone key of a string 4
money_format() Returns a string formatted as a currency string 4
nl_langinfo() Returns specific local information 4
nl2br() Inserts HTML line breaks in front of each newline in a

string
3

number_format() Formats a number with grouped thousands 3
ord() Returns the ASCII value of the first character of a

string
3

parse_str() Parses a query string into variables 3
print() Outputs a string 3
printf() Outputs a formatted string 3
quoted_printable_decode() Decodes a quoted-printable string 3
quotemeta() Quotes meta characters 3
rtrim() Strips whitespace from the right side of a string 3
setlocale() Sets locale information 3
sha1() Calculates the SHA-1 hash of a string 4
sha1_file() Calculates the SHA-1 hash of a file 4
similar_text() Calculates the similarity between two strings 3
soundex() Calculates the soundex key of a string 3
sprintf() Writes a formatted string to a variable 3
sscanf() Parses input from a string according to a format 4
str_ireplace() Replaces some characters in a string (case-insensitive) 5

 PDF by Hans Home Collection

str_pad() Pads a string to a new length 4
str_repeat() Repeats a string a specified number of times 4
str_replace() Replaces some characters in a string (case-sensitive) 3
str_rot13() Performs the ROT13 encoding on a string 4
str_shuffle() Randomly shuffles all characters in a string 4
str_split() Splits a string into an array 5
str_word_count() Count the number of words in a string 4
strcasecmp() Compares two strings (case-insensitive) 3
strchr() Finds the first occurrence of a string inside another

string (alias of strstr())
3

strcmp() Compares two strings (case-sensitive) 3
strcoll() Locale based string comparison 4
strcspn() Returns the number of characters found in a string

before any part of some specified characters are found
3

strip_tags() Strips HTML and PHP tags from a string 3
stripcslashes() Unquotes a string quoted with addcslashes() 4
stripslashes() Unquotes a string quoted with addslashes() 3
stripos() Returns the position of the first occurrence of a string

inside another string (case-insensitive)
5

stristr() Finds the first occurrence of a string inside another
string (case-insensitive)

3

strlen() Returns the length of a string 3
strnatcasecmp() Compares two strings using a "natural order" algorithm

(case-insensitive)
4

strnatcmp() Compares two strings using a "natural order" algorithm
(case-sensitive)

4

strncasecmp() String comparison of the first n characters (case-
insensitive)

4

strncmp() String comparison of the first n characters (case-
sensitive)

4

strpbrk() Searches a string for any of a set of characters 5
strpos() Returns the position of the first occurrence of a string

inside another string (case-sensitive)
3

strrchr() Finds the last occurrence of a string inside another
string

3

strrev() Reverses a string 3
strripos() Finds the position of the last occurrence of a string

inside another string (case-insensitive)
5

strrpos() Finds the position of the last occurrence of a string
inside another string (case-sensitive)

3

strspn() Returns the number of characters found in a string that
contains only characters from a specified charlist

3

strstr() Finds the first occurrence of a string inside another
string (case-sensitive)

3

strtok() Splits a string into smaller strings 3
strtolower() Converts a string to lowercase letters 3
strtoupper() Converts a string to uppercase letters 3
strtr() Translates certain characters in a string 3
substr() Returns a part of a string 3
substr_compare() Compares two strings from a specified start position

(binary safe and optionally case-sensitive)
5

substr_count() Counts the number of times a substring occurs in a
string

4

substr_replace() Replaces a part of a string with another string 4
trim() Strips whitespace from both sides of a string 3
ucfirst() Converts the first character of a string to uppercase 3
ucwords() Converts the first character of each word in a string to

uppercase
3

vfprintf() Writes a formatted string to a specified output stream 5
vprintf() Outputs a formatted string 4

 PDF by Hans Home Collection

vsprintf() Writes a formatted string to a variable 4
wordwrap() Wraps a string to a given number of characters 4

PHP String Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
CRYPT_SALT_LENGTH Contains the length of the default encryption method

for the
system. For standard DES encryption, the length is 2

CRYPT_STD_DES Set to 1 if the standard DES-based encryption with a 2
character salt is supported, 0 otherwise

CRYPT_EXT_DES Set to 1 if the extended DES-based encryption with a 9
character salt is supported, 0 otherwise

CRYPT_MD5 Set to 1 if the MD5 encryption with a 12 character salt
starting with 1 is supported, 0 otherwise

CRYPT_BLOWFISH Set to 1 if the Blowfish encryption with a 16 character
salt starting with 2 or $2a$ is supported, 0
otherwise0

HTML_SPECIALCHARS
HTML_ENTITIES
ENT_COMPAT
ENT_QUOTES
ENT_NOQUOTES
CHAR_MAX
LC_CTYPE
LC_NUMERIC
LC_TIME
LC_COLLATE
LC_MONETARY
LC_ALL
LC_MESSAGES
STR_PAD_LEFT
STR_PAD_RIGHT
STR_PAD_BOTH

PHP Operators
Operators are used to operate on values.

PHP Operators

This section lists the different operators used in PHP.

Arithmetic Operators

Operator Description Example Result
+ Addition x=2

x+2
4

- Subtraction x=2
5-x

3

* Multiplication x=4
x*5

20

/ Division 15/5 3

 PDF by Hans Home Collection

5/2 2.5
% Modulus (division remainder) 5%2

10%8
10%2

1
2
0

++ Increment x=5
x++

x=6

-- Decrement x=5
x--

x=4

Assignment Operators

Operator Example Is The Same As
= x=y x=y
+= x+=y x=x+y
-= x-=y x=x-y
= x=y x=x*y
/= x/=y x=x/y
%= x%=y x=x%y

Comparison Operators

Operator Description Example
== is equal to 5==8 returns false
!= is not equal 5!=8 returns true
> is greater than 5>8 returns false
< is less than 5<8 returns true
>= is greater than or equal to 5>=8 returns false
<= is less than or equal to 5<=8 returns true

Logical Operators

Operator Description Example
&& and x=6

y=3

(x < 10 && y > 1) returns true
|| or x=6

y=3

(x==5 || y==5) returns false
! not x=6

y=3

!(x==y) returns true

PHP If...Else Statements
The if, elseif and else statements in PHP are used to perform different actions based on
different conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

 PDF by Hans Home Collection

• if...else statement - use this statement if you want to execute a set of code when a
condition is true and another if the condition is not true

• elseif statement - is used with the if...else statement to execute a set of code if one of
several condition are true

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,
use the if....else statement.

Syntax
if (condition)
 code to be executed if condition is true;
else
 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, otherwise it
will output "Have a nice day!":

<html>
<body>
<?php
$d=date("D");
if ($d=="Fri")
 echo "Have a nice weekend!";
else
 echo "Have a nice day!";
?>
</body>
</html>

If more than one line should be executed if a condition is true/false, the lines should be enclosed
within curly braces:

<html>
<body>
<?php
$d=date("D");
if ($d=="Fri")
 {
 echo "Hello!
";
 echo "Have a nice weekend!";
 echo "See you on Monday!";
 }
?>
</body>
</html>

The ElseIf Statement

If you want to execute some code if one of several conditions are true use the elseif statement

Syntax
if (condition)

 PDF by Hans Home Collection

 code to be executed if condition is true;
elseif (condition)
 code to be executed if condition is true;
else
 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and "Have
a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice day!":

<html>
<body>
<?php
$d=date("D");
if ($d=="Fri")
 echo "Have a nice weekend!";
elseif ($d=="Sun")
 echo "Have a nice Sunday!";
else
 echo "Have a nice day!";
?>
</body>
</html>

PHP Switch Statement

The Switch statement in PHP is used to perform one of several different actions based
on one of several different conditions.

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax
switch (expression)
{
case label1:
 code to be executed if expression = label1;
 break;
case label2:
 code to be executed if expression = label2;
 break;
default:
 code to be executed
 if expression is different
 from both label1 and label2;
}

Example

This is how it works:

• A single expression (most often a variable) is evaluated once

 PDF by Hans Home Collection

• The value of the expression is compared with the values for each case in the structure
• If there is a match, the code associated with that case is executed
• After a code is executed, break is used to stop the code from running into the next case
• The default statement is used if none of the cases are true

<html>
<body>
<?php
switch ($x)
{
case 1:
 echo "Number 1";
 break;
case 2:
 echo "Number 2";
 break;
case 3:
 echo "Number 3";
 break;
default:
 echo "No number between 1 and 3";
}
?>
</body>
</html>

PHP Arrays

An array can store one or more values in a single variable name.

What is an array?

When working with PHP, sooner or later, you might want to create many similar variables.

Instead of having many similar variables, you can store the data as elements in an array.

Each element in the array has its own ID so that it can be easily accessed.

There are three different kind of arrays:

• Numeric array - An array with a numeric ID key
• Associative array - An array where each ID key is associated with a value
• Multidimensional array - An array containing one or more arrays

Numeric Arrays

A numeric array stores each element with a numeric ID key.

There are different ways to create a numeric array.

Example 1

In this example the ID key is automatically assigned:

 PDF by Hans Home Collection

$names = array("Peter","Quagmire","Joe");

Example 2

In this example we assign the ID key manually:

$names[0] = "Peter";
$names[1] = "Quagmire";
$names[2] = "Joe";

The ID keys can be used in a script:

<?php
$names[0] = "Peter";
$names[1] = "Quagmire";
$names[2] = "Joe";
echo $names[1] . " and " . $names[2] .
" are ". $names[0] . "'s neighbors";
?>

The code above will output:

Quagmire and Joe are Peter's neighbors

Associative Arrays

An associative array, each ID key is associated with a value.

When storing data about specific named values, a numerical array is not always the best way to
do it.

With associative arrays we can use the values as keys and assign values to them.

Example 1

In this example we use an array to assign ages to the different persons:

$ages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34);

Example 2

This example is the same as example 1, but shows a different way of creating the array:

$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";

The ID keys can be used in a script:

<?php
$ages['Peter'] = "32";
$ages['Quagmire'] = "30";
$ages['Joe'] = "34";
echo "Peter is " . $ages['Peter'] . " years old.";
?>

 PDF by Hans Home Collection

The code above will output:

Peter is 32 years old.

Multidimensional Arrays

In a multidimensional array, each element in the main array can also be an array. And each
element in the sub-array can be an array, and so on.

Example

In this example we create a multidimensional array, with automatically assigned ID keys:

$families = array
(
 "Griffin"=>array
 (
 "Peter",
 "Lois",
 "Megan"
),
 "Quagmire"=>array
 (
 "Glenn"
),
 "Brown"=>array
 (
 "Cleveland",
 "Loretta",
 "Junior"
)
);

The array above would look like this if written to the output:

Array
(
[Griffin] => Array
 (
 [0] => Peter
 [1] => Lois
 [2] => Megan
)
[Quagmire] => Array
 (
 [0] => Glenn
)
[Brown] => Array
 (
 [0] => Cleveland
 [1] => Loretta
 [2] => Junior
)
)

Example 2

Lets try displaying a single value from the array above:

 PDF by Hans Home Collection

echo "Is " . $families['Griffin'][2] .
" a part of the Griffin family?";

The code above will output:

Is Megan a part of the Griffin family?

PHP Looping

Looping statements in PHP are used to execute the same block of code a specified
number of times.

Looping

Very often when you write code, you want the same block of code to run a number of times. You
can use looping statements in your code to perform this.

In PHP we have the following looping statements:

• while - loops through a block of code if and as long as a specified condition is true
• do...while - loops through a block of code once, and then repeats the loop as long as a

special condition is true
• for - loops through a block of code a specified number of times
• foreach - loops through a block of code for each element in an array

The while Statement

The while statement will execute a block of code if and as long as a condition is true.

Syntax
while (condition)
code to be executed;

Example

The following example demonstrates a loop that will continue to run as long as the variable i is
less than, or equal to 5. i will increase by 1 each time the loop runs:

<html>
<body>
<?php
$i=1;
while($i<=5)
 {
 echo "The number is " . $i . "
";
 $i++;
 }
?>
</body>
</html>

 PDF by Hans Home Collection

The do...while Statement

The do...while statement will execute a block of code at least once - it then will repeat the loop
as long as a condition is true.

Syntax
do
{
code to be executed;
}
while (condition);

Example

The following example will increment the value of i at least once, and it will continue incrementing
the variable i as long as it has a value of less than 5:

<html>
<body>
<?php
$i=0;
do
 {
 $i++;
 echo "The number is " . $i . "
";
 }
while ($i<5);
?>
</body>
</html>

The for Statement

The for statement is used when you know how many times you want to execute a statement or a
list of statements.

Syntax
for (initialization; condition; increment)
{
 code to be executed;
}

Note: The for statement has three parameters. The first parameter initializes variables, the
second parameter holds the condition, and the third parameter contains the increments required
to implement the loop. If more than one variable is included in the initialization or the increment
parameter, they should be separated by commas. The condition must evaluate to true or false.

Example

The following example prints the text "Hello World!" five times:

<html>
<body>
<?php
for ($i=1; $i<=5; $i++)
{
 echo "Hello World!
";
}

 PDF by Hans Home Collection

?>
</body>
</html>

The foreach Statement

The foreach statement is used to loop through arrays.

For every loop, the value of the current array element is assigned to $value (and the array pointer
is moved by one) - so on the next loop, you'll be looking at the next element.

Syntax
foreach (array as value)
{
 code to be executed;
}

Example

The following example demonstrates a loop that will print the values of the given array:

<html>
<body>
<?php
$arr=array("one", "two", "three");
foreach ($arr as $value)
{
 echo "Value: " . $value . "
";
}
?>
</body>
</html>

PHP Functions

The real power of PHP comes from its functions.

In PHP - there are more than 700 built-in functions available.

PHP Functions

In this tutorial we will show you how to create your own functions.

For a reference and examples of the built-in functions, please visit our PHP Reference.

Create a PHP Function

A function is a block of code that can be executed whenever we need it.

Creating PHP functions:

 PDF by Hans Home Collection

• All functions start with the word "function()"
• Name the function - It should be possible to understand what the function does by its

name. The name can start with a letter or underscore (not a number)
• Add a "{" - The function code starts after the opening curly brace
• Insert the function code
• Add a "}" - The function is finished by a closing curly brace

Example

A simple function that writes my name when it is called:

<html>
<body>
<?php
function writeMyName()
 {
 echo "Kai Jim Refsnes";
 }
writeMyName();
?>
</body>
</html>

Use a PHP Function

Now we will use the function in a PHP script:

<html>
<body>
<?php
function writeMyName()
 {
 echo "Kai Jim Refsnes";
 }
echo "Hello world!
";
echo "My name is ";
writeMyName();
echo ".
That's right, ";
writeMyName();
echo " is my name.";
?>
</body>
</html>

The output of the code above will be:

Hello world!
My name is Kai Jim Refsnes.
That's right, Kai Jim Refsnes is my name.

PHP Functions - Adding parameters

Our first function (writeMyName()) is a very simple function. It only writes a static string.

To add more functionality to a function, we can add parameters. A parameter is just like a
variable.

 PDF by Hans Home Collection

You may have noticed the parentheses after the function name, like: writeMyName(). The
parameters are specified inside the parentheses.

Example 1

The following example will write different first names, but the same last name:

<html>
<body>
<?php
function writeMyName($fname)
 {
 echo $fname . " Refsnes.
";
 }
echo "My name is ";
writeMyName("Kai Jim");
echo "My name is ";
writeMyName("Hege");
echo "My name is ";
writeMyName("Stale");
?>
</body>
</html>

The output of the code above will be:

My name is Kai Jim Refsnes.
My name is Hege Refsnes.
My name is Stale Refsnes.

Example 2

The following function has two parameters:

<html>
<body>
<?php
function writeMyName($fname,$punctuation)
 {
 echo $fname . " Refsnes" . $punctuation . "
";
 }
echo "My name is ";
writeMyName("Kai Jim",".");
echo "My name is ";
writeMyName("Hege","!");
echo "My name is ";
writeMyName("Ståle","...");
?>
</body>
</html>

The output of the code above will be:

My name is Kai Jim Refsnes.
My name is Hege Refsnes!
My name is Ståle Refsnes...

 PDF by Hans Home Collection

PHP Functions - Return values

Functions can also be used to return values.

Example
<html>
<body>
<?php
function add($x,$y)
 {
 $total = $x + $y;
 return $total;
 }
echo "1 + 16 = " . add(1,16)
?>
</body>
</html>

The output of the code above will be:

1 + 16 = 17

PHP Forms and User Input

The PHP $_GET and $_POST variables are used to retrieve information from forms, like
user input.

PHP Form Handling

The most important thing to notice when dealing with HTML forms and PHP is that any form
element in an HTML page will automatically be available to your PHP scripts.

Form example:

<html>
<body>
<form action="welcome.php" method="post">
Name: <input type="text" name="name" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>
</body>
</html>

The example HTML page above contains two input fields and a submit button. When the user fills
in this form and click on the submit button, the form data is sent to the "welcome.php" file.

The "welcome.php" file looks like this:

<html>
<body>
Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old.
</body>
</html>

 PDF by Hans Home Collection

A sample output of the above script may be:

Welcome John.
You are 28 years old.

The PHP $_GET and $_POST variables will be explained in the next chapters.

Form Validation

User input should be validated whenever possible. Client side validation is faster, and will reduce
server load.

However, any site that gets enough traffic to worry about server resources, may also need to
worry about site security. You should always use server side validation if the form accesses a
database.

A good way to validate a form on the server is to post the form to itself, instead of jumping to a
different page. The user will then get the error messages on the same page as the form. This
makes it easier to discover the error.

PHP $_GET

The $_GET variable is used to collect values from a form with method="get".

The $_GET Variable

The $_GET variable is an array of variable names and values sent by the HTTP GET method.

The $_GET variable is used to collect values from a form with method="get". Information sent
from a form with the GET method is visible to everyone (it will be displayed in the browser's
address bar) and it has limits on the amount of information to send (max. 100 characters).

Example
<form action="welcome.php" method="get">
Name: <input type="text" name="name" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

When the user clicks the "Submit" button, the URL sent could look something like this:

http://www.w3schools.com/welcome.php?name=Peter&age=37

The "welcome.php" file can now use the $_GET variable to catch the form data (notice that the
names of the form fields will automatically be the ID keys in the $_GET array):

Welcome <?php echo $_GET["name"]; ?>.

You are <?php echo $_GET["age"]; ?> years old!

 PDF by Hans Home Collection

Why use $_GET?

Note: When using the $_GET variable all variable names and values are displayed in the URL. So
this method should not be used when sending passwords or other sensitive information! However,
because the variables are displayed in the URL, it is possible to bookmark the page. This can be
useful in some cases.

Note: The HTTP GET method is not suitable on large variable values; the value cannot exceed
100 characters.

The $_REQUEST Variable

The PHP $_REQUEST variable contains the contents of both $_GET, $_POST, and $_COOKIE.

The PHP $_REQUEST variable can be used to get the result from form data sent with both the GET
and POST methods.

Example
Welcome <?php echo $_REQUEST["name"]; ?>.

You are <?php echo $_REQUEST["age"]; ?> years old!

PHP $_POST

The $_POST variable is used to collect values from a form with method="post".

The $_POST Variable

The $_POST variable is an array of variable names and values sent by the HTTP POST method.

The $_POST variable is used to collect values from a form with method="post". Information sent
from a form with the POST method is invisible to others and has no limits on the amount of
information to send.

Example
<form action="welcome.php" method="post">
Enter your name: <input type="text" name="name" />
Enter your age: <input type="text" name="age" />
<input type="submit" />
</form>

When the user clicks the "Submit" button, the URL will not contain any form data, and will look
something like this:

http://www.w3schools.com/welcome.php

The "welcome.php" file can now use the $_POST variable to catch the form data (notice that the
names of the form fields will automatically be the ID keys in the $_POST array):

Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old!

 PDF by Hans Home Collection

Why use $_POST?

• Variables sent with HTTP POST are not shown in the URL
• Variables have no length limit

However, because the variables are not displayed in the URL, it is not possible to bookmark the
page.

The $_REQUEST Variable

The PHP $_REQUEST variable contains the contents of both $_GET, $_POST, and $_COOKIE.

The PHP $_REQUEST variable can be used to get the result from form data sent with both the GET
and POST methods.

Example
Welcome <?php echo $_REQUEST["name"]; ?>.

You are <?php echo $_REQUEST["age"]; ?> years old!

PHP Date()

The PHP date() function is used to format a time or a date.

The PHP Date() Function

The PHP date() function formats a timestamp to a more readable date and time.

Syntax
date(format,timestamp)

Parameter Description
format Required. Specifies the format of the timestamp
timestamp Optional. Specifies a timestamp. Default is the current date and time (as a

timestamp)

PHP Date - What is a Timestamp?

A timestamp is the number of seconds since January 1, 1970 at 00:00:00 GMT. This is also known
as the Unix Timestamp.

PHP Date - Format the Date

The first parameter in the date() function specifies how to format the date/time. It uses letters to
represent date and time formats. Here are some of the letters that can be used:

• d - The day of the month (01-31)
• m - The current month, as a number (01-12)
• Y - The current year in four digits

 PDF by Hans Home Collection

An overview of all the letters that can be used in the format parameter, can be found in our PHP
Date reference.

Other characters, like"/", ".", or "-" can also be inserted between the letters to add additional
formatting:

<?php
echo date("Y/m/d");
echo "
";
echo date("Y.m.d");
echo "
";
echo date("Y-m-d");
?>

The output of the code above could be something like this:

2006/07/11
2006.07.11
2006-07-11

PHP Date - Adding a Timestamp

The second parameter in the date() function specifies a timestamp. This parameter is optional. If
you do not supply a timestamp, the current time will be used.

In our next example we will use the mktime() function to create a timestamp for tomorrow.

The mktime() function returns the Unix timestamp for a specified date.

Syntax
mktime(hour,minute,second,month,day,year,is_dst)

To go one day in the future we simply add one to the day argument of mktime():

<?php
$tomorrow = mktime(0,0,0,date("m"),date("d")+1,date("Y"));
echo "Tomorrow is ".date("Y/m/d/", $tomorrow);
?>

The output of the code above could be something like this:

Tomorrow is 2006/07/12

PHP Date - Reference

For more information about all the PHP date functions, please visit our PHP Date Reference.

PHP Include File

Server Side Includes (SSI) are used to create functions, headers, footers, or elements
that will be reused on multiple pages.

 PDF by Hans Home Collection

Server Side Includes

You can insert the content of a file into a PHP file before the server executes it, with the include()
or require() function. The two functions are identical in every way, except how they handle errors.
The include() function generates a warning (but the script will continue execution) while the
require() function generates a fatal error (and the script execution will stop after the error).

These two functions are used to create functions, headers, footers, or elements that can be
reused on multiple pages.

This can save the developer a considerable amount of time. This means that you can create a
standard header or menu file that you want all your web pages to include. When the header
needs to be updated, you can only update this one include file, or when you add a new page to
your site, you can simply change the menu file (instead of updating the links on all web pages).

The include() Function

The include() function takes all the text in a specified file and copies it into the file that uses the
include function.

Example 1

Assume that you have a standard header file, called "header.php". To include the header file in a
page, use the include() function, like this:

<html>
<body>
<?php include("header.php"); ?>
<h1>Welcome to my home page</h1>
<p>Some text</p>
</body>
</html>

Example 2

Now, let's assume we have a standard menu file that should be used on all pages (include files
usually have a ".php" extension). Look at the "menu.php" file below:

<html>
<body>
Home |
About Us |
Contact Us

The three files, "default.php", "about.php", and "contact.php" should all include the "menu.php"
file. Here is the code in "default.php":

<?php include("menu.php"); ?>
<h1>Welcome to my home page</h1>
<p>Some text</p>
</body>
</html>

If you look at the source code of the "default.php" in a browser, it will look something like this:

<html>
<body>

 PDF by Hans Home Collection

Home |
About Us |
Contact Us
<h1>Welcome to my home page</h1>
<p>Some text</p>
</body>
</html>

And, of course, we would have to do the same thing for "about.php" and "contact.php". By using
include files, you simply have to update the text in the "menu.php" file if you decide to rename or
change the order of the links or add another web page to the site.

The require() Function

The require() function is identical to include(), they only handle errors differently.

The include() function generates a warning (but the script will continue execution) while the
require() function generates a fatal error (and the script execution will stop after the error).

If you include a file with the include() function and an error occurs, you might get an error
message like the one below.

PHP code:

<html>
<body>

<?php
include("wrongFile.php");
echo "Hello World!";
?>

</body>
</html>

Error message:

Warning: include(wrongFile.php) [function.include]:
failed to open stream:
No such file or directory in C:\home\website\test.php on line 5
Warning: include() [function.include]:
Failed opening 'wrongFile.php' for inclusion
(include_path='.;C:\php5\pear')
in C:\home\website\test.php on line 5
Hello World!

Notice that the echo statement is still executed! This is because a Warning does not stop the
script execution.

Now, let's run the same example with the require() function.

PHP code:

<html>
<body>

<?php
require("wrongFile.php");

 PDF by Hans Home Collection

echo "Hello World!";
?>

</body>
</html>

Error message:

Warning: require(wrongFile.php) [function.require]:
failed to open stream:
No such file or directory in C:\home\website\test.php on line 5
Fatal error: require() [function.require]:
Failed opening required 'wrongFile.php'
(include_path='.;C:\php5\pear')
in C:\home\website\test.php on line 5

The echo statement was not executed because the script execution stopped after the fatal error.

It is recommended to use the require() function instead of include(), because scripts should not
continue executing if files are missing or misnamed.

PHP File Handling

The fopen() function is used to open files in PHP.

Opening a File

The fopen() function is used to open files in PHP.

The first parameter of this function contains the name of the file to be opened and the second
parameter specifies in which mode the file should be opened:

<html>
<body>
<?php
$file=fopen("welcome.txt","r");
?>
</body>
</html>

The file may be opened in one of the following modes:

Modes Description
r Read only. Starts at the beginning of the file
r+ Read/Write. Starts at the beginning of the file

w Write only. Opens and clears the contents of file; or creates a new file if it
doesn't exist

w+ Read/Write. Opens and clears the contents of file; or creates a new file if it
doesn't exist

a Append. Opens and writes to the end of the file or creates a new file if it
doesn't exist

a+ Read/Append. Preserves file content by writing to the end of the file
x Write only. Creates a new file. Returns FALSE and an error if file already exists
x+ Read/Write. Creates a new file. Returns FALSE and an error if file already

exists

 PDF by Hans Home Collection

Note: If the fopen() function is unable to open the specified file, it returns 0 (false).

Example

The following example generates a message if the fopen() function is unable to open the specified
file:

<html>
<body>
<?php
$file=fopen("welcome.txt","r") or exit("Unable to open file!");
?>
</body>
</html>

Closing a File

The fclose() function is used to close an open file:

<?php
$file = fopen("test.txt","r");
//some code to be executed
fclose($file);
?>

Check End-of-file

The feof() function checks if the "end-of-file" (EOF) has been reached.

The feof() function is useful for looping through data of unknown length.

Note: You cannot read from files opened in w, a, and x mode!

if (feof($file)) echo "End of file";

Reading a File Line by Line

The fgets() function is used to read a single line from a file.

Note: After a call to this function the file pointer has moved to the next line.

Example

The example below reads a file line by line, until the end of file is reached:

<?php
$file = fopen("welcome.txt", "r") or exit("Unable to open file!");
//Output a line of the file until the end is reached
while(!feof($file))
 {
 echo fgets($file). "
";
 }
fclose($file);

 PDF by Hans Home Collection

?>

Reading a File Character by Character

The fgetc() function is used to read a single character from a file.

Note: After a call to this function the file pointer moves to the next character.

Example

The example below reads a file character by character, until the end of file is reached:

<?php
$file=fopen("welcome.txt","r") or exit("Unable to open file!");
while (!feof($file))
 {
 echo fgetc($file);
 }
fclose($file);
?>

PHP Filesystem Reference

PHP Filesystem Functions

PHP Filesystem Introduction

The filesystem functions allow you to access and manipulate the filesystem.

Installation

The filesystem functions are part of the PHP core. There is no installation needed to use these
functions.

Runtime Configuration

The behavior of the filesystem functions is affected by settings in php.ini.

Filesystem configuration options:

Name Default Description Changeable
allow_url_fopen "1" Allows fopen()-type functions to work

with URLs (available since PHP 4.0.4)
PHP_INI_SYSTEM

user_agent NULL Defines the user agent for PHP to send
(available since PHP 4.3)

PHP_INI_ALL

default_socket_timeout "60" Sets the default timeout, in seconds,
for socket based streams (available
since PHP 4.3)

PHP_INI_ALL

from "" Defines the anonymous FTP password
(your email address)

PHP_INI_ALL

auto_detect_line_endings "0" When set to "1", PHP will examine the PHP_INI_ALL

 PDF by Hans Home Collection

data read by fgets() and file() to see if
it is using Unix, MS-Dos or Mac line-
ending characters (available since PHP
4.3)

Unix / Windows Compatibility

When specifying a path on Unix platforms, the forward slash (/) is used as directory separator.
However, on Windows platforms, both forward slash (/) and backslash (\) can be used.

PHP Filesystem Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
basename() Returns the filename component of a path 3
chgrp() Changes the file group 3
chmod() Changes the file mode 3
chown() Changes the file owner 3
clearstatcache() Clears the file status cache 3
copy() Copies a file 3
delete() See unlink() or unset()
dirname() Returns the directory name component of a path 3
disk_free_space() Returns the free space of a directory 4
disk_total_space() Returns the total size of a directory 4
diskfreespace() Alias of disk_free_space() 3
fclose() Closes an open file 3
feof() Tests for end-of-file on an open file 3
fflush() Flushes buffered output to an open file 4
fgetc() Returns a character from an open file 3
fgetcsv() Parses a line from an open file, checking for CSV fields 3
fgets() Returns a line from an open file 3
fgetss() Returns a line, with HTML and PHP tags removed, from an open

file
3

file() Reads a file into an array 3
file_exists() Checks whether or not a file or directory exists 3
file_get_contents() Reads a file into a string 4
file_put_contents Writes a string to a file 5
fileatime() Returns the last access time of a file 3
filectime() Returns the last change time of a file 3
filegroup() Returns the group ID of a file 3
fileinode() Returns the inode number of a file 3
filemtime() Returns the last modification time of a file 3
fileowner() Returns the user ID (owner) of a file 3
fileperms() Returns the permissions of a file 3
filesize() Returns the file size 3
filetype() Returns the file type 3
flock() Locks or releases a file 3
fnmatch() Matches a filename or string against a specified pattern 4
fopen() Opens a file or URL 3
fpassthru() Reads from an open file, until EOF, and writes the result to the

output buffer
3

fputcsv() Formats a line as CSV and writes it to an open file 5
fputs() Alias of fwrite() 3
fread() Reads from an open file 3

 PDF by Hans Home Collection

fscanf() Parses input from an open file according to a specified format 4
fseek() Seeks in an open file 3
fstat() Returns information about an open file 4
ftell() Returns the current position in an open file 3
ftruncate() Truncates an open file to a specified length 4
fwrite() Writes to an open file 3
glob() Returns an array of filenames / directories matching a specified

pattern
4

is_dir() Checks whether a file is a directory 3
is_executable() Checks whether a file is executable 3
is_file() Checks whether a file is a regular file 3
is_link() Checks whether a file is a link 3
is_readable() Checks whether a file is readable 3
is_uploaded_file() Checks whether a file was uploaded via HTTP POST 3
is_writable() Checks whether a file is writeable 4
is_writeable() Alias of is_writable() 3
link() Creates a hard link 3
linkinfo() Returns information about a hard link 3
lstat() Returns information about a file or symbolic link 3
mkdir() Creates a directory 3
move_uploaded_file() Moves an uploaded file to a new location 4
parse_ini_file() Parses a configuration file 4
pathinfo() Returns information about a file path 4
pclose() Closes a pipe opened by popen() 3
popen() Opens a pipe 3
readfile() Reads a file and writes it to the output buffer 3
readlink() Returns the target of a symbolic link 3
realpath() Returns the absolute pathname 4
rename() Renames a file or directory 3
rewind() Rewinds a file pointer 3
rmdir() Removes an empty directory 3
set_file_buffer() Sets the buffer size of an open file 3
stat() Returns information about a file 3
symlink() Creates a symbolic link 3
tempnam() Creates a unique temporary file 3
tmpfile() Creates a unique temporary file 3
touch() Sets access and modification time of a file 3
umask() Changes file permissions for files 3
unlink() Deletes a file 3

PHP Filesystem Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
GLOB_BRACE
GLOB_ONLYDIR
GLOB_MARK
GLOB_NOSORT
GLOB_NOCHECK
GLOB_NOESCAPE
PATHINFO_DIRNAME
PATHINFO_BASENAME
PATHINFO_EXTENSION
FILE_USE_INCLUDE_PATH
FILE_APPEND

 PDF by Hans Home Collection

FILE_IGNORE_NEW_LINES
FILE_SKIP_EMPTY_LINES

PHP File Upload

With PHP, it is possible to upload files to the server.

Create an Upload-File Form

To allow users to upload files from a form can be very useful.

Look at the following HTML form for uploading files:

<html>
<body>
<form action="upload_file.php" method="post"
enctype="multipart/form-data">
<label for="file">Filename:</label>
<input type="file" name="file" id="file" />

<input type="submit" name="submit" value="Submit" />
</form>
</body>
</html>

Notice the following about the HTML form above:

• The enctype attribute of the <form> tag specifies which content-type to use when
submitting the form. "multipart/form-data" is used when a form requires binary data, like
the contents of a file, to be uploaded

• The type="file" attribute of the <input> tag specifies that the input should be processed
as a file. For example, when viewed in a browser, there will be a browse-button next to
the input field

Note: Allowing users to upload files is a big security risk. Only permit trusted users to perform file
uploads.

Create The Upload Script

The "upload_file.php" file contains the code for uploading a file:

<?php
if ($_FILES["file"]["error"] > 0)
 {
 echo "Error: " . $_FILES["file"]["error"] . "
";
 }
else
 {
 echo "Upload: " . $_FILES["file"]["name"] . "
";
 echo "Type: " . $_FILES["file"]["type"] . "
";
 echo "Size: " . ($_FILES["file"]["size"] / 1024) . " Kb
";
 echo "Stored in: " . $_FILES["file"]["tmp_name"];
 }
?>

 PDF by Hans Home Collection

By using the global PHP $_FILES array you can upload files from a client computer to the remote
server.

The first parameter is the form's input name and the second index can be either "name", "type",
"size", "tmp_name" or "error". Like this:

• $_FILES["file"]["name"] - the name of the uploaded file
• $_FILES["file"]["type"] - the type of the uploaded file
• $_FILES["file"]["size"] - the size in bytes of the uploaded file
• $_FILES["file"]["tmp_name"] - the name of the temporary copy of the file stored on the

server
• $_FILES["file"]["error"] - the error code resulting from the file upload

This is a very simple way of uploading files. For security reasons, you should add restrictions on
what the user is allowed to upload.

Restrictions on Upload

In this script we add some restrictions to the file upload. The user may only upload .gif or .jpeg
files and the file size must be under 20 kb:

<?php
if ((($_FILES["file"]["type"] == "image/gif")
|| ($_FILES["file"]["type"] == "image/pjpeg"))
&& ($_FILES["file"]["size"] < 20000))
 {
 if ($_FILES["file"]["error"] > 0)
 {
 echo "Error: " . $_FILES["file"]["error"] . "
";
 }
 else
 {
 echo "Upload: " . $_FILES["file"]["name"] . "
";
 echo "Type: " . $_FILES["file"]["type"] . "
";
 echo "Size: " . ($_FILES["file"]["size"] / 1024) . " Kb
";
 echo "Stored in: " . $_FILES["file"]["tmp_name"];
 }
 }
else
 {
 echo "Invalid file";
 }
?>

Saving the Uploaded File

The examples above create a temporary copy of the uploaded files in the PHP temp folder on the
server.

The temporary copied files disappears when the script ends. To store the uploaded file we need to
copy it to a different location:

<?php
if (($_FILES["file"]["type"] == "image/gif")
|| ($_FILES["file"]["type"] == "image/pjpeg")
&& ($_FILES["file"]["size"] < 20000))
 {

 PDF by Hans Home Collection

 if ($_FILES["file"]["error"] > 0)
 {
 echo "Return Code: " . $_FILES["file"]["error"] . "
";
 }
 else
 {
 echo "Upload: " . $_FILES["file"]["name"] . "
";
 echo "Type: " . $_FILES["file"]["type"] . "
";
 echo "Size: " . ($_FILES["file"]["size"] / 1024) . " Kb
";
 echo "Temp file: " . $_FILES["file"]["tmp_name"] . "
";
 if (file_exists("upload/" . $_FILES["file"]["name"]))
 {
 echo $_FILES["file"]["name"] . " already exists. ";
 }
 else
 {
 move_uploaded_file($_FILES["file"]["tmp_name"],
 "upload/" . $_FILES["file"]["name"]);
 echo "Stored in: " . "upload/" . $_FILES["file"]["name"];
 }
 }
 }
else
 {
 echo "Invalid file";
 }
?>

The script above checks if the file already exists, if it does not, it copies the file to the specified
folder.

Note: This example saves the file to a new folder called "upload"

PHP Cookies

A cookie is often used to identify a user.

What is a Cookie?

A cookie is often used to identify a user. A cookie is a small file that the server embeds on the
user's computer. Each time the same computer requests a page with a browser, it will send the
cookie too. With PHP, you can both create and retrieve cookie values.

How to Create a Cookie?

The setcookie() function is used to set a cookie.

Note: The setcookie() function must appear BEFORE the <html> tag.

Syntax
setcookie(name, value, expire, path, domain);

Example

In the example below, we will create a cookie named "user" and assign the value "Alex Porter" to
it. We also specify that the cookie should expire after one hour:

 PDF by Hans Home Collection

<?php
setcookie("user", "Alex Porter", time()+3600);
?>
<html>
<body>
</body>
</html>

Note: The value of the cookie is automatically URLencoded when sending the cookie, and
automatically decoded when received (to prevent URLencoding, use setrawcookie() instead).

How to Retrieve a Cookie Value?

The PHP $_COOKIE variable is used to retrieve a cookie value.

In the example below, we retrieve the value of the cookie named "user" and display it on a page:

<?php
// Print a cookie
echo $_COOKIE["user"];
// A way to view all cookies
print_r($_COOKIE);
?>

In the following example we use the isset() function to find out if a cookie has been set:

<html>
<body>
<?php
if (isset($_COOKIE["user"]))
 echo "Welcome " . $_COOKIE["user"] . "!
";
else
 echo "Welcome guest!
";
?>
</body>
</html>

How to Delete a Cookie?

When deleting a cookie you should assure that the expiration date is in the past.

Delete example:

<?php
// set the expiration date to one hour ago
setcookie("user", "", time()-3600);
?>

What if a Browser Does NOT Support Cookies?

If your application deals with browsers that do not support cookies, you will have to use other
methods to pass information from one page to another in your application. One method is to pass
the data through forms (forms and user input are described earlier in this tutorial).

 PDF by Hans Home Collection

The form below passes the user input to "welcome.php" when the user clicks on the "Submit"
button:

<html>
<body>
<form action="welcome.php" method="post">
Name: <input type="text" name="name" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>
</body>
</html>

Retrieve the values in the "welcome.php" file like this:

<html>
<body>
Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old.
</body>
</html>

PHP Sessions

A PHP session variable is used to store information about, or change settings for a user
session. Session variables hold information about one single user, and are available to
all pages in one application.

PHP Session Variables

When you are working with an application, you open it, do some changes and then you close it.
This is much like a Session. The computer knows who you are. It knows when you start the
application and when you end. But on the internet there is one problem: the web server does not
know who you are and what you do because the HTTP address doesn't maintain state.

A PHP session solves this problem by allowing you to store user information on the server for later
use (i.e. username, shopping items, etc). However, session information is temporary and will be
deleted after the user has left the website. If you need a permanent storage you may want to
store the data in a database.

Sessions work by creating a unique id (UID) for each visitor and store variables based on this
UID. The UID is either stored in a cookie or is propagated in the URL.

Starting a PHP Session

Before you can store user information in your PHP session, you must first start up the session.

Note: The session_start() function must appear BEFORE the <html> tag:

<?php session_start(); ?>
<html>
<body>
</body>
</html>

 PDF by Hans Home Collection

The code above will register the user's session with the server, allow you to start saving user
information, and assign a UID for that user's session.

Storing a Session Variable

The correct way to store and retrieve session variables is to use the PHP $_SESSION variable:

<?php
session_start();
// store session data
$_SESSION['views']=1;
?>
<html>
<body>
<?php
//retrieve session data
echo "Pageviews=". $_SESSION['views'];
?>
</body>
</html>

Output:

Pageviews=1

In the example below, we create a simple page-views counter. The isset() function checks if the
"views" variable has already been set. If "views" has been set, we can increment our counter. If
"views" doesn't exist, we create a "views" variable, and set it to 1:

<?php

session_start();
if(isset($_SESSION['views']))
 $_SESSION['views']=$_SESSION['views']+1;

else
 $_SESSION['views']=1;
echo "Views=". $_SESSION['views'];
?>

Destroying a Session

If you wish to delete some session data, you can use the unset() or the session_destroy()
function.

The unset() function is used to free the specified session variable:

<?php
unset($_SESSION['views']);
?>

You can also completely destroy the session by calling the session_destroy() function:

<?php
session_destroy();

 PDF by Hans Home Collection

?>

Note: session_destroy() will reset your session and you will lose all your stored session data.

PHP Sending E-mails

PHP allows you to send e-mails directly from a script.

The PHP mail() Function

The PHP mail() function is used to send emails from inside a script.

Syntax

mail(to,subject,message,headers,parameters)

Parameter Description
to Required. Specifies the receiver / receivers of the email
subject Required. Specifies the subject of the email. Note: This parameter cannot

contain any newline characters
message Required. Defines the message to be sent. Each line should be separated with

a LF (\n). Lines should not exceed 70 characters
headers Optional. Specifies additional headers, like From, Cc, and Bcc. The additional

headers should be separated with a CRLF (\r\n)
parameters Optional. Specifies an additional parameter to the sendmail program

Note: For the mail functions to be available, PHP requires an installed and working email system.
The program to be used is defined by the configuration settings in the php.ini file. Read more in
our PHP Mail reference.

PHP Simple E-Mail

The simplest way to send an email with PHP is to send a text email.

In the example below we first declare the variables ($to, $subject, $message, $from, $headers),
then we use the variables in the mail() function to send an e-mail:

<?php
$to = "someone@example.com";
$subject = "Test mail";
$message = "Hello! This is a simple email message.";
$from = "someonelse@example.com";
$headers = "From: $from";
mail($to,$subject,$message,$headers);
echo "Mail Sent.";
?>

 PDF by Hans Home Collection

PHP Mail Form

With PHP, you can create a feedback-form on your website. The example below sends a text
message to a specified e-mail address:

<html>
<body>
<?php
if (isset($_REQUEST['email']))
//if "email" is filled out, send email
 {
 //send email
 $email = $_REQUEST['email'] ;
 $subject = $_REQUEST['subject'] ;
 $message = $_REQUEST['message'] ;
 mail("someone@example.com", "Subject: $subject",
 $message, "From: $email");
 echo "Thank you for using our mail form";
 }
else
//if "email" is not filled out, display the form
 {
 echo "<form method='post' action='mailform.php'>
 Email: <input name='email' type='text' />

 Subject: <input name='subject' type='text' />

 Message:

 <textarea name='message' rows='15' cols='40'>
 </textarea>

 <input type='submit' />
 </form>";
 }
?>
</body>
</html>

This is how the example above works:

• First, check if the email input field is filled out
• If it is not set (like when the page is first visited); output the HTML form
• If it is set (after the form is filled out); send the email from the form
• When submit is pressed after the form is filled out, the page reloads, sees that the email

input is set, and sends the email

PHP Mail Reference

For more information about the PHP mail() function, visit our PHP Mail Reference.

PHP Secure E-mails

There is a weakness in the PHP e-mail script in the previous chapter.

PHP E-mail Injections

First, look at the PHP code from the previous chapter:

<html>
<body>
<?php

 PDF by Hans Home Collection

if (isset($_REQUEST['email']))
//if "email" is filled out, send email
 {
 //send email
 $email = $_REQUEST['email'] ;
 $subject = $_REQUEST['subject'] ;
 $message = $_REQUEST['message'] ;
 mail("someone@example.com", "Subject: $subject",
 $message, "From: $email");
 echo "Thank you for using our mail form";
 }
else
//if "email" is not filled out, display the form
 {
 echo "<form method='post' action='mailform.php'>
 Email: <input name='email' type='text' />

 Subject: <input name='subject' type='text' />

 Message:

 <textarea name='message' rows='15' cols='40'>
 </textarea>

 <input type='submit' />
 </form>";
 }
?>
</body>
</html>

The problem with the code above is that unauthorized users can insert data into the mail headers
via the input form.

What happens if the user adds the following text to the email input field in the form?

someone@example.com%0ACc:person2@example.com
%0ABcc:person3@example.com,person3@example.com,
anotherperson4@example.com,person5@example.com
%0ABTo:person6@example.com

The mail() function puts the text above into the mail headers as usual, and now the header has
an extra Cc:, Bcc:, and To: field. When the user clicks the submit button, the e-mail will be sent
to all of the addresses above!

PHP Stopping E-mail Injections

The best way to stop e-mail injections is to validate the input.

The code below is the same as in the previous chapter, but now we have added an input validator
that checks the email field in the form:

<html>
<body>
<?php
function spamcheck($field)
 {
//eregi() performs a case insensitive regular expression match
 if(eregi("to:",$field) || eregi("cc:",$field))
 {
 return TRUE;
 }
 else

 PDF by Hans Home Collection

 {
 return FALSE;
 }
 }
//if "email" is filled out, send email
if (isset($_REQUEST['email']))
 {
 //check if the email address is invalid
 $mailcheck = spamcheck($_REQUEST['email']);
 if ($mailcheck==TRUE)
 {
 echo "Invalid input";
 }
 else
 {
 //send email
 $email = $_REQUEST['email'] ;
 $subject = $_REQUEST['subject'] ;
 $message = $_REQUEST['message'] ;
 mail("someone@example.com", "Subject: $subject",
 $message, "From: $email");
 echo "Thank you for using our mail form";
 }
 }
else
//if "email" is not filled out, display the form
 {
 echo "<form method='post' action='mailform.php'>
 Email: <input name='email' type='text' />

 Subject: <input name='subject' type='text' />

 Message:

 <textarea name='message' rows='15' cols='40'>
 </textarea>

 <input type='submit' />
 </form>";
 }
?>
</body>
</html>

PHP Error Handling

The default error handling in PHP is very simple. An error message with filename, line
number and a message describing the error is sent to the browser.

PHP Error Handling

When creating scripts and web applications, error handling is an important part. If your code lacks
error checking code, your program may look very unprofessional and you may be open to security
risks.

This tutorial contains some of the most common error checking methods in PHP.

We will show different error handling methods:

• Simple "die()" statements
• Custom errors and error triggers
• Error reporting

 PDF by Hans Home Collection

Basic Error Handling: Using the die() function

The first example shows a simple script that opens a text file:

<?php
$file=fopen("welcome.txt","r");
?>

If the file does not exist you might get an error like this:

Warning: fopen(welcome.txt) [function.fopen]: failed to open stream:
No such file or directory in C:\webfolder\test.php on line 2

To avoid that the user gets an error message like the one above, we test if the file exist before we
try to access it:

<?php
if(!file_exists("welcome.txt"))
 {
 die("File not found");
 }
else
 {
 $file=fopen("welcome.txt","r");
 }
?>

Now if the file does not exist you get an error like this:

File not found

The code above is more efficient than the earlier code, because it uses a simple error handling
mechanism to stop the script after the error.

However, simply stopping the script is not always the right way to go. Let's take a look at
alternative PHP functions for handling errors.

Creating a Custom Error Handler

Creating a custom error handler is quite simple. We simply create a special function that can be
called when an error occurs in PHP.

This function must be able to handle a minimum of two parameters (error level and error
message) but can accept up to five parameters (optionally: file, line-number, and the error
context):

Syntax
error_function(error_level,error_message,
error_file,error_line,error_context)

Parameter Description
error_level Required. Specifies the error report level for the user-defined error. Must be a

value number. See table below for possible error report levels
error_message Required. Specifies the error message for the user-defined error

 PDF by Hans Home Collection

error_file Optional. Specifies the filename in which the error occurred
error_line Optional. Specifies the line number in which the error occurred
error_context Optional. Specifies an array containing every variable, and their values, in use

when the error occurred

Error Report levels

These error report levels are the different types of error the user-defined error handler can be
used for:

Value Constant Description
2 E_WARNING Non-fatal run-time errors. Execution of the script is not halted
8 E_NOTICE Run-time notices. The script found something that might be an

error, but could also happen when running a script normally
256 E_USER_ERROR Fatal user-generated error. This is like an E_ERROR set by the

programmer using the PHP function trigger_error()
512 E_USER_WARNING Non-fatal user-generated warning. This is like an E_WARNING

set by the programmer using the PHP function trigger_error()
1024 E_USER_NOTICE User-generated notice. This is like an E_NOTICE set by the

programmer using the PHP function trigger_error()
4096 E_RECOVERABLE_ERROR Catchable fatal error. This is like an E_ERROR but can be

caught by a user defined handle (see also set_error_handler())
8191 E_ALL All errors and warnings, except level E_STRICT (E_STRICT will

be part of E_ALL as of PHP 6.0)

Now lets create a function to handle errors:

function customError($errno, $errstr)
 {
 echo "Error: [$errno] $errstr
";
 echo "Ending Script";
 die();
 }

The code above is a simple error handling function. When it is triggered, it gets the error level and
an error message. It then outputs the error level and message and terminates the script.

Now that we have created an error handling function we need to decide when it should be
triggered.

Set Error Handler

The default error handler for PHP is the built in error handler. We are going to make the function
above the default error handler for the duration of the script.

It is possible to change the error handler to apply for only some errors, that way the script can
handle different errors in different ways. However, in this example we are going to use our
custom error handler for all errors:

set_error_handler("customError");

Since we want our custom function to handle all errors, the set_error_handler() only needed one
parameter, a second parameter could be added to specify an error level.

Example

Testing the error handler by trying to output variable that does not exist:

 PDF by Hans Home Collection

<?php
//error handler function
function customError($errno, $errstr)
 {
 echo "Error: [$errno] $errstr";
 }
//set error handler
set_error_handler("customError");
//trigger error
echo($test);
?>

The output of the code above should be something like this:

Custom error: [8] Undefined variable: test

Trigger an Error

In a script where users can input data it is useful to trigger errors when an illegal input occurs. In
PHP, this is done by the trigger_error() function.

Example

In this example an error occurs if the "test" variable is bigger than "1":

<?php
$test=2;
if ($test>1)
{
trigger_error("Value must be 1 or below");
}
?>

The output of the code above should be something like this:

Notice: Value must be 1 or below
in C:\webfolder\test.php on line 6

An error can be triggered anywhere you wish in a script, and by adding a second parameter, you
can specify what error level is triggered.

Possible error types:

• E_USER_ERROR - Fatal user-generated run-time error. Errors that can not be recovered
from. Execution of the script is halted

• E_USER_WARNING - Non-fatal user-generated run-time warning. Execution of the script
is not halted

• E_USER_NOTICE - Default. User-generated run-time notice. The script found something
that might be an error, but could also happen when running a script normally

Example

In this example an E_USER_WARNING occurs if the "test" variable is bigger than "1". If an
E_USER_WARNING occurs we will use our custom error handler and end the script:

<?php
//error handler function

 PDF by Hans Home Collection

function customError($errno, $errstr)
 {
 echo "Error: [$errno] $errstr
";
 echo "Ending Script";
 die();
 }
//set error handler
set_error_handler("customError",E_USER_WARNING);
//trigger error
$test=2;
if ($test>1)
 {
 trigger_error("Value must be 1 or below",E_USER_WARNING);
 }
?>

The output of the code above should be something like this:

Error: [512] Value must be 1 or below
Ending Script

Now that we have learned to create our own errors and how to trigger them, lets take a look at
error logging.

Error Logging

By default, PHP sends an error log to the servers logging system or a file, depending on how the
error_log configuration is set in the php.ini file. By using the error_log() function you can send
error logs to a specified file or a remote destination.

Sending errors messages to yourself by e-mail can be a good way of getting notified of specific
errors.

Send an Error Message by E-Mail

In the example below we will send an e-mail with an error message and end the script, if a
specific error occurs:

<?php
//error handler function
function customError($errno, $errstr)
 {
 echo "Error: [$errno] $errstr
";
 echo "Webmaster has been notified";
 error_log("Error: [$errno] $errstr",1,
 "someone@example.com","From: webmaster@example.com");
}
//set error handler
set_error_handler("customError",E_USER_WARNING);
//trigger error
$test=2;
if ($test>1)
 {
 trigger_error("Value must be 1 or below",E_USER_WARNING);
 }
?>

The output of the code above should be something like this:

 PDF by Hans Home Collection

Error: [512] Value must be 1 or below
Webmaster has been notified

And the mail received from the code above looks like this:

Error: [512] Value must be 1 or below

This should not be used with all errors. Regular errors should be logged on the server using the
default PHP logging system.

PHP Exception Handling

Exceptions are used to change the normal flow of a script if a specified error occurs

What is an Exception

With PHP 5 came a new object oriented way of dealing with errors.

Exception handling is used to change the normal flow of the code execution if a specified error
(exceptional) condition occurs. This condition is called an exception.

This is what normally happens when an exception is triggered:

• The current code state is saved
• The code execution will switch to a predefined (custom) exception handler function
• Depending on the situation, the handler may then resume the execution from the saved

code state, terminate the script execution or continue the script from a different location
in the code

We will show different error handling methods:

• Basic use of Exceptions
• Creating a custom exception handler
• Multiple exceptions
• Re-throwing an exception
• Setting a top level exception handler

Note: Exceptions should only be used with error conditions, and should not be used to jump to
another place in the code at a specified point.

Basic Use of Exceptions

When an exception is thrown, the code following it will not be executed, and PHP will try to find
the matching "catch" block.

If an exception is not caught, a fatal error will be issued with an "Uncaught Exception" message.

Lets try to throw an exception without catching it:

<?php
//create function with an exception
function checkNum($number)
 {

 PDF by Hans Home Collection

 if($number>1)
 {
 throw new Exception("Value must be 1 or below");
 }
 return true;
 }

//trigger exception
checkNum(2);
?>

The code above will get an error like this:

Fatal error: Uncaught exception 'Exception'
with message 'Value must be 1 or below' in C:\webfolder\test.php:6
Stack trace: #0 C:\webfolder\test.php(12):
checkNum(28) #1 {main} thrown in C:\webfolder\test.php on line 6

Try, throw and catch

To avoid the error from the example above, we need to create the proper code to handle an
exception.

Proper exception code should include:

1. Try - A function using an exception should be in a "try" block. If the exception does not
trigger, the code will continue as normal. However if the exception triggers, an exception
is "thrown"

2. Throw - This is how you trigger an exception. Each "throw" must have at least one
"catch"

3. Catch - A "catch" block retrieves an exception and creates an object containing the
exception information

Lets try to trigger an exception with valid code:

<?php
//create function with an exception
function checkNum($number)
 {
 if($number>1)
 {
 throw new Exception("Value must be 1 or below");
 }
 return true;
 }

//trigger exception in a "try" block
try
 {
 checkNum(2);
 //If the exception is thrown, this text will not be shown
 echo 'If you see this, the number is 1 or below';
 }

//catch exception
catch(Exception $e)
 {
 echo 'Message: ' .$e->getMessage();
 }
?>

 PDF by Hans Home Collection

The code above will get an error like this:

Message: Value must be 1 or below

Example explained:

The code above throws an exception and catches it:

1. The checkNum() function is created. It checks if a number is greater than 1. If it is, an
exception is thrown

2. The checkNum() function is called in a "try" block
3. The exception within the checkNum() function is thrown
4. The "catch" block retrives the exception and creates an object ($e) containing the

exception information
5. The error message from the exception is echoed by calling $e->getMessage() from the

exception object

However, one way to get around the "every throw must have a catch" rule is to set a top level
exception handler to errors that slip trough.

Creating a Custom Exception Class

Creating a custom exception handler is quite simple. We simply create a special class with
functions that can be called when an exception occurs in PHP. The class must be an extension of
the exception class.

The custom exception class inherits the properties from PHP's exception class and you can add
custom functions to it.

Lets create an exception class:

<?php
class customException extends Exception
 {
 public function errorMessage()
 {
 //error message
 $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile()
 .': '.$this->getMessage().' is not a valid E-Mail address';
 return $errorMsg;
 }
 }
$email = "someone@example...com";
try
 {
 //check if
 if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE)
 {
 //throw exception if email is not valid
 throw new customException($email);
 }
 }
catch (customException $e)
 {
 //display custom message
 echo $e->errorMessage();
 }
?>

 PDF by Hans Home Collection

The new class is a copy of the old exception class with an addition of the errorMessage() function.
Since it is a copy of the old class, and it inherits the properties and methods from the old class,
we can use the exception class methods like getLine() and getFile() and getMessage().

Example explained:

The code above throws an exception and catches it with a custom exception class:

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is not a valid e-mail address
4. The "try" block is executed and an exception is thrown since the e-mail address is invalid
5. The "catch" block catches the exception and displays the error message

Multiple Exceptions

It is possible for a script to use multiple exceptions to check for multiple conditions.

It is possible to use several if..else blocks, a switch, or nest multiple exceptions. These exceptions
can use different exception classes and return different error messages:

<?php
class customException extends Exception
{
public function errorMessage()
{
//error message
$errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile()
.': '.$this->getMessage().' is not a valid E-Mail address';
return $errorMsg;
}
}

$email = "someone@example.com";

try
 {
 //check if
 if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE)
 {
 //throw exception if email is not valid
 throw new customException($email);
 }
 //check for "example" in mail address
 if(strpos($email, "example") !== FALSE)
 {
 throw new Exception("$email is an example e-mail");
 }
 }

catch (customException $e)
 {
 echo $e->errorMessage();
 }
catch(Exception $e)
 {
 echo $e->getMessage();
 }

 PDF by Hans Home Collection

?>

Example explained:

The code above tests two conditions and throws an exception if any of the conditions are not met:

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is a valid e-mail address, but contains the string
"example"

4. The "try" block is executed and an exception is not thrown on the first condition
5. The second condition triggers an exception since the e-mail contains the string "example"
6. The "catch" block catches the exception and displays the correct error message

If there was no customException catch, only the base exception catch, the exception would be
handled there

Re-throwing Exceptions

Sometimes, when an exception is thrown, you may wish to handle it differently than the standard
way. It is possible to throw an exception a second time within a "catch" block.

A script should hide system errors from users. System errors may be important for the coder, but
is of no intrest to the user. To make things easier for the user you can re-throw the exception
with a user friendly message:

<?php
class customException extends Exception
 {
 public function errorMessage()
 {
 //error message
 $errorMsg = $this->getMessage().' is not a valid E-Mail address.';
 return $errorMsg;
 }
 }
$email = "someone@example.com";
try
 {
 try
 {
 //check for "example" in mail address
 if(strpos($email, "example") !== FALSE)
 {
 //throw exception if email is not valid
 throw new Exception($email);
 }
 }
 catch(Exception $e)
 {
 //re-throw exception
 throw new customException($email);
 }
 }
catch (customException $e)
 {
 //display custom message
 echo $e->errorMessage();

 PDF by Hans Home Collection

 }
?>

Example explained:

The code above tests if the email-address contains the string "example" in it, if it does, the
exception is re-thrown:

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is a valid e-mail address, but contains the string
"example"

4. The "try" block contains another "try" block to make it possible to re-throw the exception
5. The exception is triggered since the e-mail contains the string "example"
6. The "catch" block catches the exception and re-throws a "customException"
7. The "customException" is caught and displays an error message

If the exception is not caught in it's current "try" block, it will search for a catch block on "higher
levels".

Set a Top Level Exception Handler

The set_exception_handler() function sets a user-defined function to handle all uncaught
exceptions.

<?php
function myException($exception)
{
echo "Exception: " , $exception->getMessage();
}
set_exception_handler('myException');
throw new Exception('Uncaught Exception occurred');
?>

The output of the code above should be something like this:

Exception: Uncaught Exception occurred

In the code above there was no "catch" block. Instead, the top level exception handler triggered.
This function should be used to catch uncaught exceptions.

Rules for exceptions

• Code may be surrounded in a try block, to help catch potential exceptions
• Each try block or "throw" must have at least one corresponding catch block
• Multiple catch blocks can be used to catch different classes of exceptions
• Exceptions can be thrown (or re-thrown) in a catch block within a try block

A simple rule: If you throw something, you have to catch it.

PHP Filter

 PDF by Hans Home Collection

PHP filters is used to validate and filter data coming from insecure sources, like user
input.

What is a PHP Filter?

A PHP filter is used to validate and filter data coming from insecure sources.

To test, validate and filter user input or custom data is an important part of any web application.

The PHP filter extension is designed to make data filtering easier and quicker.

Why use a Filter?

Almost all web applications depend on external input. Usually this comes from a user or another
application (like a web service). By using filters you can be sure your application gets the correct
input type.

You should always filter all external data!

Input filtering is one of the most important application security issues.

What is external data?

• Input data from a form
• Cookies
• Web services data
• Server variables
• Database query results

Functions and Filters

To filter a variable, use one of the following filter functions:

• filter_var() - Filters a single variable with a specified filter
• filter_var_array() - Filter several variables with the same or different filters
• filter_input - Get one input variable and filter it
• filter_input_array - Get several input variables and filter them with the same or different

filters

In the example below, we validate an integer using the filter_var() function:

<?php
$int = 123;
if(!filter_var($int, FILTER_VALIDATE_INT))
 {
 echo("Integer is not valid");
 }
else
 {
 echo("Integer is valid");
 }
?>

 PDF by Hans Home Collection

The code above uses the "FILTER_VALIDATE_INT" filter to filter the variable. Since the integer is
valid, the output of the code above will be: "Integer is valid".

If we try with a variable that is not an integer (like "123abc"), the output will be: "Integer is not
valid".

For a complete list of functions and filters, visit our PHP Filter Reference.

Validating and Sanitizing

There are two kinds of filters:

Validating filters:

• Are used to validate user input
• Strict format rules (like URL or E-Mail validating)
• Returns the expected type on success or FALSE on failure

Sanitizing filters:

• Are used to allow or disallow specified characters in a string
• No data format rules
• Always return the string

Options and Flags

Options and flags are used to add additional filtering options to the specified filters.

Different filters have different options and flags.

In the example below, we validate an integer using the filter_var() and the "min_range" and
"max_range" options:

<?php
$var=300;
$int_options = array(
"options"=>array
 (
 "min_range"=>0,
 "max_range"=>256
)
);
if(!filter_var($var, FILTER_VALIDATE_INT, $int_options))
 {
 echo("Integer is not valid");
 }
else
 {
 echo("Integer is valid");
 }
?>

Like the code above, options must be put in an associative array with the name "options". If a flag
is used it does not need to be in an array.

 PDF by Hans Home Collection

Since the integer is "300" it is not in the specified range, and the output of the code above will
be: "Integer is not valid".

For a complete list of functions and filters, visit our PHP Filter Reference. Check each filter to see
what options and flags are available.

Validate Input

Let's try validating input from a form.

The first thing we need to do is to confirm that the input data we are looking for exists.

Then we filter the input data using the filter_input() function.

In the example below, the input variable "email" is sent to the PHP page:

<?php
if(!filter_has_var(INPUT_GET, "email"))
 {
 echo("Input type does not exist");
 }
else
 {
 if (!filter_input(INPUT_GET, "email", FILTER_VALIDATE_EMAIL))
 {
 echo "E-Mail is not valid";
 }
 else
 {
 echo "E-Mail is valid";
 }
 }
?>

Example Explained

The example above has an input (email) sent to it using the "GET" method:

1. Check if an "email" input variable of the "GET" type exist
2. If the input variable exists, check if it is a valid e-mail address

Sanitize Input

Let's try cleaning up an URL sent from a form.

First we confirm that the input data we are looking for exists.

Then we sanitize the input data using the filter_input() function.

In the example below, the input variable "url" is sent to the PHP page:

<?php
if(!filter_has_var(INPUT_POST, "url"))
 {
 echo("Input type does not exist");

 PDF by Hans Home Collection

 }
else
 {
 $url = filter_input(INPUT_POST,
 "url", FILTER_SANITIZE_URL);
 }
?>

Example Explained

The example above has an input (url) sent to it using the "POST" method:

1. Check if the "url" input of the "POST" type exists
2. If the input variable exists, sanitize (take away invalid characters) and store it in the $url

variable

If the input variable is a string like this "http://www.W3ååSchøøools.com/", the $url variable after
the sanitizing will look like this:

http://www.W3Schools.com/

Filter Multiple Inputs

A form almost always consist of more than one input field. To avoid calling the filter_var or
filter_input functions over and over, we can use the filter_var_array or the filter_input_array
functions.

In this example we use the filter_input_array() function to filter three GET variables. The received
GET variables is a name, an age and an e-mail address:

<?php
$filters = array
 (
 "name" => array
 (
 "filter"=>FILTER_SANITIZE_STRING
),
 "age" => array
 (
 "filter"=>FILTER_VALIDATE_INT,
 "options"=>array
 (
 "min_range"=>1,
 "max_range"=>120
)
),
 "email"=> FILTER_VALIDATE_EMAIL,
);
$result = filter_input_array(INPUT_GET, $filters);
if (!$result["age"])
 {
 echo("Age must be a number between 1 and 120.
");
 }
elseif(!$result["email"])
 {
 echo("E-Mail is not valid.
");
 }
else
 {

 PDF by Hans Home Collection

 echo("User input is valid");
 }
?>

Example Explained

The example above has three inputs (name, age and email) sent to it using the "GET" method:

1. Set an array containing the name of input variables and the filters used on the specified
input variables

2. Call the filter_input_array() function with the GET input variables and the array we just
set

3. Check the "age" and "email" variables in the $result variable for invalid inputs. (If any of
the input variables are invalid, that input variable will be FALSE after the
filter_input_array() function)

The second parameter of the filter_input_array() function can be an array or a single filter ID.

If the parameter is a single filter ID all values in the input array are filtered by the specified filter.

If the parameter is an array it must follow these rules:

• Must be a associative array containing an input variable as an array key (like the "age"
input variable)

• The array value must be a filter ID or an array specifying the filter, flags and options

Using Filter Callback

It is possible to call a user defined function and use it as a filter using the FILTER_CALLBACK
filter. This way, we have full control of the data filtering.

You can create your own user defined function or use an existing PHP function

The function you wish to use to filter is specified the same way as an option is specified. In an
associative array with the name "options"

In the example below, we us a user created function to convert all "_" to whitespaces:

<?php
function convertSpace($string)
{
return str_replace("_", " ", $string);
}

$string = "Peter_is_a_great_guy!";

echo filter_var($string, FILTER_CALLBACK,
array("options"=>"convertSpace"));
?>

The result from the code above should look like this:

Peter is a great guy!

Example Explained

The example above converts all "_" to whitespaces:

 PDF by Hans Home Collection

1. Create a function to replace "_" to whitespaces
2. Call the filter_var() function with the FILTER_CALLBACK filter and an array containing our

function

PHP MySQL Introduction
MySQL is the most popular open source database server.

What is MySQL?

MySQL is a database. A database defines a structure for storing information.

In a database, there are tables. Just like HTML tables, database tables contain rows, columns, and
cells.

Databases are useful when storing information categorically. A company may have a database
with the following tables: "Employees", "Products", "Customers" and "Orders".

Database Tables

A database most often contains one or more tables. Each table has a name (e.g. "Customers" or
"Orders"). Each table contains records (rows) with data.

Below is an example of a table called "Persons":

LastName FirstName Address City
Hansen Ola Timoteivn 10 Sandnes
Svendson Tove Borgvn 23 Sandnes
Pettersen Kari Storgt 20 Stavanger

The table above contains three records (one for each person) and four columns (LastName,
FirstName, Address, and City).

Queries

A query is a question or a request.

With MySQL, we can query a database for specific information and have a recordset returned.

Look at the following query:

SELECT LastName FROM Persons

The query above selects all the data in the LastName column in the Persons table, and will return
a recordset like this:

LastName
Hansen
Svendson
Pettersen

 PDF by Hans Home Collection

Download MySQL Database

If you don't have a PHP server with a MySQL Database, you can download MySQL for free here:
http://www.mysql.com/downloads/index.html

Facts About MySQL Database

One great thing about MySQL is that it can be scaled down to support embedded database
applications. Perhaps it is because of this reputation that many people believe that MySQL can
only handle small to medium-sized systems.

The truth is that MySQL is the de-facto standard database for web sites that support huge
volumes of both data and end users (like Friendster, Yahoo, Google). Look at
http://www.mysql.com/customers/ for an overview of companies that use MySQL.

PHP MySQL Connect to a Database

The free MySQL Database is very often used with PHP.

Connecting to a MySQL Database

Before you can access and work with data in a database, you must create a connection to the
database.

In PHP, this is done with the mysql_connect() function.

Syntax
mysql_connect(servername,username,password);

Parameter Description
servername Optional. Specifies the server to connect to. Default value is "localhost:3306"
username Optional. Specifies the username to log in with. Default value is the name of

the user that owns the server process
password Optional. Specifies the password to log in with. Default is ""

Note: There are more available parameters, but the ones listed above are the most important.
Visit our full PHP MySQL Reference for more details.

Example

In the following example we store the connection in a variable ($con) for later use in the script.
The "die" part will be executed if the connection fails:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
// some code
?>

 PDF by Hans Home Collection

Closing a Connection

The connection will be closed as soon as the script ends. To close the connection before, use the
mysql_close() function.

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
// some code
mysql_close($con);
?>

PHP MySQL Create Database and Tables

A database holds one or multiple tables.

Create a Database

The CREATE DATABASE statement is used to create a database in MySQL.

Syntax
CREATE DATABASE database_name

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

In the following example we create a database called "my_db":

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
if (mysql_query("CREATE DATABASE my_db",$con))
 {
 echo "Database created";
 }
else
 {
 echo "Error creating database: " . mysql_error();
 }
mysql_close($con);
?>

Create a Table

The CREATE TABLE statement is used to create a database table in MySQL.

 PDF by Hans Home Collection

Syntax
CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
.......
)

We must add the CREATE TABLE statement to the mysql_query() function to execute the
command.

Example

The following example shows how you can create a table named "person", with three columns.
The column names will be "FirstName", "LastName" and "Age":

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
// Create database
if (mysql_query("CREATE DATABASE my_db",$con))
 {
 echo "Database created";
 }
else
 {
 echo "Error creating database: " . mysql_error();
 }
// Create table in my_db database
mysql_select_db("my_db", $con);
$sql = "CREATE TABLE person
(
FirstName varchar(15),
LastName varchar(15),
Age int
)";
mysql_query($sql,$con);
mysql_close($con);
?>

Important: A database must be selected before a table can be created. The database is selected
with the mysql_select_db() function.

Note: When you create a database field of type varchar, you must specify the maximum length of
the field, e.g. varchar(15).

MySQL Data Types

Below is the different MySQL data types that can be used:

Numeric Data Types Description
int(size)
smallint(size)
tinyint(size)
mediumint(size)

Hold integers only. The maximum number of digits can be
specified in the size parameter

 PDF by Hans Home Collection

bigint(size)
decimal(size,d)
double(size,d)
float(size,d)

Hold numbers with fractions. The maximum number of
digits can be specified in the size parameter. The
maximum number of digits to the right of the decimal is
specified in the d parameter

Textual Data Types Description
char(size) Holds a fixed length string (can contain letters, numbers,

and special characters). The fixed size is specified in
parenthesis

varchar(size) Holds a variable length string (can contain letters,
numbers, and special characters). The maximum size is
specified in parenthesis

tinytext Holds a variable string with a maximum length of 255
characters

text
blob

Holds a variable string with a maximum length of 65535
characters

mediumtext
mediumblob

Holds a variable string with a maximum length of
16777215 characters

longtext
longblob

Holds a variable string with a maximum length of
4294967295 characters

Date Data Types Description
date(yyyy-mm-dd)
datetime(yyyy-mm-dd hh:mm:ss)
timestamp(yyyymmddhhmmss)
time(hh:mm:ss)

Holds date and/or time

Misc. Data Types Description
enum(value1,value2,ect) ENUM is short for ENUMERATED list. Can store one of up

to 65535 values listed within the () brackets. If a value is
inserted that is not in the list, a blank value will be
inserted

set SET is similar to ENUM. However, SET can have up to 64
list items and can store more than one choice

Primary Keys and Auto Increment Fields

Each table should have a primary key field.

A primary key is used to uniquely identify the rows in a table. Each primary key value must be
unique within the table. Furthermore, the primary key field cannot be null because the database
engine requires a value to locate the record.

The primary key field is always indexed. There is no exception to this rule! You must index the
primary key field so the database engine can quickly locate rows based on the key's value.

The following example sets the personID field as the primary key field. The primary key field is
often an ID number, and is often used with the AUTO_INCREMENT setting. AUTO_INCREMENT
automatically increases the value of the field by 1 each time a new record is added. To ensure
that the primary key field cannot be null, we must add the NOT NULL setting to the field.

Example
$sql = "CREATE TABLE person
(
personID int NOT NULL AUTO_INCREMENT,
PRIMARY KEY(personID),
FirstName varchar(15),
LastName varchar(15),

 PDF by Hans Home Collection

Age int
)";
mysql_query($sql,$con);

PHP MySQL Insert Into

The INSERT INTO statement is used to insert new records into a database table.

Insert Data Into a Database Table

The INSERT INTO statement is used to add new records to a database table.

Syntax
INSERT INTO table_name
VALUES (value1, value2,....)

You can also specify the columns where you want to insert the data:

INSERT INTO table_name (column1, column2,...)
VALUES (value1, value2,....)

Note: SQL statements are not case sensitive. INSERT INTO is the same as insert into.

To get PHP to execute the statements above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

In the previous chapter we created a table named "Person", with three columns; "Firstname",
"Lastname" and "Age". We will use the same table in this example. The following example adds
two new records to the "Person" table:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("my_db", $con);
mysql_query("INSERT INTO person (FirstName, LastName, Age)
VALUES ('Peter', 'Griffin', '35')");
mysql_query("INSERT INTO person (FirstName, LastName, Age)
VALUES ('Glenn', 'Quagmire', '33')");
mysql_close($con);
?>

Insert Data From a Form Into a Database

Now we will create an HTML form that can be used to add new records to the "Person" table.

Here is the HTML form:

<html>
<body>

 PDF by Hans Home Collection

<form action="insert.php" method="post">
Firstname: <input type="text" name="firstname" />
Lastname: <input type="text" name="lastname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>
</body>
</html>

When a user clicks the submit button in the HTML form in the example above, the form data is
sent to "insert.php". The "insert.php" file connects to a database, and retrieves the values from
the form with the PHP $_POST variables. Then, the mysql_query() function executes the INSERT
INTO statement, and a new record will be added to the database table.

Below is the code in the "insert.php" page:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("my_db", $con);
$sql="INSERT INTO person (FirstName, LastName, Age)
VALUES
('$_POST[firstname]','$_POST[lastname]','$_POST[age]')";
if (!mysql_query($sql,$con))
 {
 die('Error: ' . mysql_error());
 }
echo "1 record added";
mysql_close($con)
?>

PHP MySQL Select

The SELECT statement is used to select data from a database.

Select Data From a Database Table

The SELECT statement is used to select data from a database.

Syntax
SELECT column_name(s)
FROM table_name

Note: SQL statements are not case sensitive. SELECT is the same as select.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

 PDF by Hans Home Collection

Example

The following example selects all the data stored in the "Person" table (The * character selects all
of the data in the table):

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("my_db", $con);
$result = mysql_query("SELECT * FROM person");
while($row = mysql_fetch_array($result))
 {
 echo $row['FirstName'] . " " . $row['LastName'];
 echo "
";
 }
mysql_close($con);
?>

The example above stores the data returned by the mysql_query() function in the $result
variable. Next, we use the mysql_fetch_array() function to return the first row from the recordset
as an array. Each subsequent call to mysql_fetch_array() returns the next row in the recordset.
The while loop loops through all the records in the recordset. To print the value of each row, we
use the PHP $row variable ($row['FirstName'] and $row['LastName']).

The output of the code above will be:

Peter Griffin
Glenn Quagmire

Display the Result in an HTML Table

The following example selects the same data as the example above, but will display the data in an
HTML table:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM person");

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
</tr>";
while($row = mysql_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 echo "</tr>";
 }

 PDF by Hans Home Collection

echo "</table>";
mysql_close($con);
?>

The output of the code above will be:

Firstname Lastname

Glenn Quagmire

Peter Griffin

PHP MySQL The Where Clause

To select only data that matches a specified criteria, add a WHERE clause to the SELECT
statement.

The WHERE clause

To select only data that matches a specific criteria, add a WHERE clause to the SELECT statement.

Syntax
SELECT column FROM table
WHERE column operator value

The following operators can be used with the WHERE clause:

Operator Description
= Equal
!= Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
BETWEEN Between an inclusive range
LIKE Search for a pattern

Note: SQL statements are not case sensitive. WHERE is the same as where.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

The following example will select all rows from the "Person" table, where FirstName='Peter':

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

mysql_select_db("my_db", $con);

 PDF by Hans Home Collection

$result = mysql_query("SELECT * FROM person
WHERE FirstName='Peter'");

while($row = mysql_fetch_array($result))
 {
 echo $row['FirstName'] . " " . $row['LastName'];
 echo "
";
 }

?>

The output of the code above will be:

Peter Griffin

PHP MySQL Order By Keyword

The ORDER BY keyword is used to sort the data in a recordset.

The ORDER BY Keyword

The ORDER BY keyword is used to sort the data in a recordset.

Syntax
SELECT column_name(s)
FROM table_name
ORDER BY column_name

Note: SQL statements are not case sensitive. ORDER BY is the same as order by.

Example

The following example selects all the data stored in the "Person" table, and sorts the result by the
"Age" column:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

mysql_select_db("my_db", $con);

$result = mysql_query("SELECT * FROM person ORDER BY age");

while($row = mysql_fetch_array($result))
 {
 echo $row['FirstName'];
 echo " " . $row['LastName'];
 echo " " . $row['Age'];
 echo "
";
 }
mysql_close($con);
?>

 PDF by Hans Home Collection

The output of the code above will be:

Glenn Quagmire 33
Peter Griffin 35

Sort Ascending or Descending

If you use the ORDER BY keyword, the sort-order of the recordset is ascending by default (1
before 9 and "a" before "p").

Use the DESC keyword to specify a descending sort-order (9 before 1 and "p" before "a"):

SELECT column_name(s)
FROM table_name
ORDER BY column_name DESC

Order by Two Columns

It is possible to order by more than one column. When ordering by more than one column, the
second column is only used if the values in the first column are identical:

SELECT column_name(s)
FROM table_name
ORDER BY column_name1, column_name2

PHP MySQL Update

The UPDATE statement is used to modify data in a database table.

Update Data In a Database

The UPDATE statement is used to modify data in a database table.

Syntax
UPDATE table_name
SET column_name = new_value
WHERE column_name = some_value

Note: SQL statements are not case sensitive. UPDATE is the same as update.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

Earlier in the tutorial we created a table named "Person". Here is how it looks:

FirstName LastName Age
Peter Griffin 35
Glenn Quagmire 33

 PDF by Hans Home Collection

The following example updates some data in the "Person" table:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("my_db", $con);

mysql_query("UPDATE Person SET Age = '36'
WHERE FirstName = 'Peter' AND LastName = 'Griffin'");
mysql_close($con);
?>

After the update, the "Person" table will look like this:

FirstName LastName Age
Peter Griffin 36
Glenn Quagmire 33

PHP MySQL Delete From

The DELETE FROM statement is used to delete rows from a database table.

Delete Data In a Database

The DELETE FROM statement is used to delete records from a database table.

Syntax
<
DELETE FROM table_name
WHERE column_name = some_value

Note: SQL statements are not case sensitive. DELETE FROM is the same as delete from.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

Earlier in the tutorial we created a table named "Person". Here is how it looks:

FirstName LastName Age
Peter Griffin 35
Glenn Quagmire 33

The following example deletes all the records in the "Person" table where LastName='Griffin':

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("my_db", $con);

 PDF by Hans Home Collection

mysql_query("DELETE FROM Person WHERE LastName='Griffin'");
mysql_close($con);
?>

After the deletion, the table will look like this:

FirstName LastName Age
Glenn Quagmire 33

PHP Database ODBC

ODBC is an Application Programming Interface (API) that allows you to connect to a
data source (e.g. an MS Access database).

Create an ODBC Connection

With an ODBC connection, you can connect to any database, on any computer in your network, as
long as an ODBC connection is available.

Here is how to create an ODBC connection to a MS Access Database:

1. Open the Administrative Tools icon in your Control Panel.
2. Double-click on the Data Sources (ODBC) icon inside.
3. Choose the System DSN tab.
4. Click on Add in the System DSN tab.
5. Select the Microsoft Access Driver. Click Finish.
6. In the next screen, click Select to locate the database.
7. Give the database a Data Source Name (DSN).
8. Click OK.

Note that this configuration has to be done on the computer where your web site is located. If you
are running Internet Information Server (IIS) on your own computer, the instructions above will
work, but if your web site is located on a remote server, you have to have physical access to that
server, or ask your web host to to set up a DSN for you to use.

Connecting to an ODBC

The odbc_connect() function is used to connect to an ODBC data source. The function takes four
parameters: the data source name, username, password, and an optional cursor type.

The odbc_exec() function is used to execute an SQL statement.

Example

The following example creates a connection to a DSN called northwind, with no username and no
password. It then creates an SQL and executes it:

$conn=odbc_connect('northwind','','');
$sql="SELECT * FROM customers";
$rs=odbc_exec($conn,$sql);

 PDF by Hans Home Collection

Retrieving Records

The odbc_fetch_row() function is used to return records from the result-set. This function returns
true if it is able to return rows, otherwise false.

The function takes two parameters: the ODBC result identifier and an optional row number:

odbc_fetch_row($rs)

Retrieving Fields from a Record

The odbc_result() function is used to read fields from a record. This function takes two
parameters: the ODBC result identifier and a field number or name.

The code line below returns the value of the first field from the record:

$compname=odbc_result($rs,1);

The code line below returns the value of a field called "CompanyName":

$compname=odbc_result($rs,"CompanyName");

Closing an ODBC Connection

The odbc_close() function is used to close an ODBC connection.

odbc_close($conn);

An ODBC Example

The following example shows how to first create a database connection, then a result-set, and
then display the data in an HTML table.

<html>
<body>
<?php
$conn=odbc_connect('northwind','','');
if (!$conn)
 {exit("Connection Failed: " . $conn);}
$sql="SELECT * FROM customers";
$rs=odbc_exec($conn,$sql);
if (!$rs)
 {exit("Error in SQL");}
echo "<table><tr>";
echo "<th>Companyname</th>";
echo "<th>Contactname</th></tr>";
while (odbc_fetch_row($rs))
{
 $compname=odbc_result($rs,"CompanyName");
 $conname=odbc_result($rs,"ContactName");
 echo "<tr><td>$compname</td>";
 echo "<td>$conname</td></tr>";
}

 PDF by Hans Home Collection

odbc_close($conn);
echo "</table>";
?>
</body>
</html>

PHP XML Expat Parser

The built-in Expat parser makes it possible to process XML documents in PHP.

What is XML?

XML is used to describe data and to focus on what data is. An XML file describes the structure of
the data.

In XML, no tags are predefined. You must define your own tags.

If you want to learn more about XML, please visit our XML tutorial.

What is Expat?

To read and update - create and manipulate - an XML document, you will need an XML parser.

There are two basic types of XML parsers:

• Tree-based parser: This parser transforms an XML document into a tree structure. It
analyzes the whole document, and provides access to the tree elements. e.g. the
Document Object Model (DOM)

• Event-based parser: Views an XML document as a series of events. When a specific event
occurs, it calls a function to handle it

The Expat parser is an event-based parser.

Event-based parsers focus on the content of the XML documents, not their structure. Because of
this, event-based parsers can access data faster than tree-based parsers.

Look at the following XML fraction:

<from>Jani</from>

An event-based parser reports the XML above as a series of three events:

• Start element: from
• Start CDATA section, value: Jani
• Close element: from

The XML example above contains well-formed XML. However, the example is not valid XML,
because there is no Document Type Definition (DTD) associated with it.

However, this makes no difference when using the Expat parser. Expat is a non-validating parser,
and ignores any DTDs.

 PDF by Hans Home Collection

As an event-based, non-validating XML parser, Expat is fast and small, and a perfect match for
PHP web applications.

Note: XML documents must be well-formed or Expat will generate an error.

Installation

The XML Expat parser functions are part of the PHP core. There is no installation needed to use
these functions.

An XML File

The XML file below will be used in our example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

Initializing the XML Parser

We want to initialize the XML parser in PHP, define some handlers for different XML events, and
then parse the XML file.

Example
<?php
//Initialize the XML parser
$parser=xml_parser_create();
//Function to use at the start of an element
function start($parser,$element_name,$element_attrs)
 {
 switch($element_name)
 {
 case "NOTE":
 echo "-- Note --
";
 break;
 case "TO":
 echo "To: ";
 break;
 case "FROM":
 echo "From: ";
 break;
 case "HEADING":
 echo "Heading: ";
 break;
 case "BODY":
 echo "Message: ";
 }
 }
//Function to use at the end of an element
function stop($parser,$element_name)
 {

 PDF by Hans Home Collection

 echo "
";
 }
//Function to use when finding character data
function char($parser,$data)
 {
 echo $data;
 }
//Specify element handler
xml_set_element_handler($parser,"start","stop");
//Specify data handler
xml_set_character_data_handler($parser,"char");
//Open XML file
$fp=fopen("test.xml","r");
//Read data
while ($data=fread($fp,4096))
 {
 xml_parse($parser,$data,feof($fp)) or
 die (sprintf("XML Error: %s at line %d",
 xml_error_string(xml_get_error_code($parser)),
 xml_get_current_line_number($parser)));
 }
//Free the XML parser
xml_parser_free($parser);
?>

The output of the code above will be:

-- Note --
To: Tove
From: Jani
Heading: Reminder
Message: Don't forget me this weekend!

How it works:

1. Initialize the XML parser with the xml_parser_create() function
2. Create functions to use with the different event handlers
3. Add the xml_set_element_handler() function to specify which function will be executed

when the parser encounters the opening and closing tags
4. Add the xml_set_character_data_handler() function to specify which function will execute

when the parser encounters character data
5. Parse the file "test.xml" with the xml_parse() function
6. In case of an error, add xml_error_string() function to convert an XML error to a textual

description
7. Call the xml_parser_free() function to release the memory allocated with the

xml_parser_create() function

More PHP Expat Parser

For more information about the PHP Expat functions, visit our PHP XML Parser Reference.

PHP XML DOM

The built-in DOM parser makes it possible to process XML documents in PHP.

 PDF by Hans Home Collection

What is DOM?

The W3C DOM provides a standard set of objects for HTML and XML documents, and a standard
interface for accessing and manipulating them.

The W3C DOM is separated into different parts (Core, XML, and HTML) and different levels (DOM
Level 1/2/3):

* Core DOM - defines a standard set of objects for any structured document
* XML DOM - defines a standard set of objects for XML documents
* HTML DOM - defines a standard set of objects for HTML documents

If you want to learn more about the XML DOM, please visit our XML DOM tutorial.

XML Parsing

To read and update - create and manipulate - an XML document, you will need an XML parser.

There are two basic types of XML parsers:

• Tree-based parser: This parser transforms an XML document into a tree structure. It
analyzes the whole document, and provides access to the tree elements

• Event-based parser: Views an XML document as a series of events. When a specific event
occurs, it calls a function to handle it

The DOM parser is an tree-based parser.

Look at the following XML document fraction:

<?xml version="1.0" encoding="ISO-8859-1"?>
<from>Jani</from>

The XML DOM sees the XML above as a tree structure:

• Level 1: XML Document
• Level 2: Root element: <from>
• Level 3: Text element: "Jani"

Installation

The DOM XML parser functions are part of the PHP core. There is no installation needed to use
these functions.

An XML File

The XML file below will be used in our example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

 PDF by Hans Home Collection

</note>

Load and Output XML

We want to initialize the XML parser, load the xml, and output it:

Example
<?php
$xmlDoc = new DOMDocument();
$xmlDoc->load("note.xml");

print $xmlDoc->saveXML();
?>

The output of the code above will be:

Tove Jani Reminder Don't forget me this weekend!

If you select "View source" in the browser window, you will see the following HTML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

The example above creates a DOMDocument-Object and loads the XML from "note.xml" into it.

Then the saveXML() function to puts the internal XML document into a string, so that we can print
it.

Looping through XML

We want to initialize the XML parser, load the XML, and loop through all elements of the <note>
element:

Example
<?php
$xmlDoc = new DOMDocument();
$xmlDoc->load("note.xml");
$x = $xmlDoc->documentElement;
foreach ($x->childNodes AS $item)
 {
 print $item->nodeName . " = " . $item->nodeValue . "
";
 }
?>

The output of the code above will be:

#text =
to = Tove
#text =

 PDF by Hans Home Collection

from = Jani
#text =
heading = Reminder
#text =
body = Don't forget me this weekend!
#text =

In the example above you see that there are empty text nodes between each element.

When XML generates, it often contains white-spaces between the nodes. The XML DOM parser
treats these as ordinary elements, and if you are not aware of them, they sometimes cause
problems.

If you want to learn more about the XML DOM, please visit our XML DOM tutorial.

PHP SimpleXML

SimpleXML handles the most common XML tasks and leaves the rest for other
extensions.

What is SimpleXML?

SimpleXML is new in PHP 5. It is an easy way of getting an element's attributes and text, if you
know the XML document's layout.

Compared to DOM or the Expat parser, SimpleXML just takes a few lines of code to read text data
from an element.

SimpleXML converts the XML document into an object, like this:

• Elements - Are converted to single attributes of the SimpleXMLElement object. When
there's more than one element on one level, they're placed inside an array

• Attributes - Are accessed using associative arrays, where an index corresponds to the
attribute name

• Element Data - Text data from elements are converted to strings. If an element has more
than one text node, they will be arranged in the order they are found

SimpleXML is fast and easy to use when performing basic tasks like:

• Reading XML files
• Extracting data from XML strings
• Editing text nodes or attributes

However, when dealing with advanced XML, like namespaces, you are better off using the Expat
parser or the XML DOM.

Installation

As of PHP 5.0, the SimpleXML functions are part of the PHP core. There is no installation needed
to use these functions.

 PDF by Hans Home Collection

Using SimpleXML

Below is an XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

We want to output the element names and data from the XML file above.

Here's what to do:

1. Load the XML file
2. Get the name of the first element
3. Create a loop that will trigger on each child node, using the children() function
4. Output the element name and data for each child node

Example

<?php
$xml = simplexml_load_file("test.xml");
echo $xml->getName() . "
";
foreach($xml->children() as $child)
 {
 echo $child->getName() . ": " . $child . "
";
 }
?>

The output of the code above will be:

note
to: Tove
from: Jani
heading: Reminder
body: Don't forget me this weekend!

More PHP SimpleXML

For more information about the PHP SimpleXML functions, visit our PHP SimpleXML Reference.

AJAX Introduction

AJAX = Asynchronous JavaScript And XML

AJAX is an acronym for Asynchronous JavaScript And XML.

AJAX is not a new programming language, but simply a new technique for creating better, faster,
and more interactive web applications.

AJAX uses JavaScript to send and receive data between a web browser and a web server.

 PDF by Hans Home Collection

The AJAX technique makes web pages more responsive by exchanging data with the web server
behind the scenes, instead of reloading an entire web page each time a user makes a change.

AJAX Is Based On Open Standards

AJAX is based on the following open standards:

• JavaScript
• XML
• HTML
• CSS

The open standards used in AJAX are well defined, and supported by all major browsers. AJAX
applications are browser and platform independent. (Cross-Platform, Cross-Browser technology)

AJAX Is About Better Internet Applications

Web applications have many benefits over desktop applications:

• they can reach a larger audience
• they are easier to install and support
• they are easier to develop

However, Internet applications are not always as "rich" and user-friendly as traditional desktop
applications.

With AJAX, Internet applications can be made richer (smaller, faster, and easier to use).

You Can Start Using AJAX Today

There is nothing new to learn.

AJAX is based on open standards. These standards have been used by most developers for
several years.

Most existing web applications can be rewritten to use AJAX technology instead of traditional
HTML forms.

AJAX Uses XML And HTTP Requests

A traditional web application will submit input (using an HTML form) to a web server. After the
web server has processed the data, it will return a completely new web page to the user.

Because the server returns a new web page each time the user submits input, traditional web
applications often run slowly and tend to be less user friendly.

With AJAX, web applications can send and retrieve data without reloading the whole web page.
This is done by sending HTTP requests to the server (behind the scenes), and by modifying only
parts of the web page using JavaScript when the server returns data.

 PDF by Hans Home Collection

XML is commonly used as the format for receiving server data, although any format, including
plain text, can be used.

You will learn more about how this is done in the next chapters of this tutorial.

PHP and AJAX

There is no such thing as an AJAX server.

AJAX is a technology that runs in your browser. It uses asynchronous data transfer (HTTP
requests) between the browser and the web server, allowing web pages to request small bits of
information from the server instead of whole pages.

AJAX is a web browser technology independent of web server software.

However, in this tutorial we will focus more on actual examples running on a PHP server, and less
on how AJAX works.

To read more about how AJAX works, visit our AJAX tutorial.

AJAX XMLHttpRequest

The XMLHttpRequest object makes AJAX possible.

The XMLHttpRequest

The XMLHttpRequest object is the key to AJAX.

It has been available ever since Internet Explorer 5.5 was released in July 2000, but not fully
discovered before people started to talk about AJAX and Web 2.0 in 2005.

Creating An XMLHttpRequest Object

Different browsers use different methods to create an XMLHttpRequest object.

Internet Explorer uses an ActiveXObject.

Other browsers uses a built in JavaScript object called XMLHttpRequest.

Here is the simplest code you can use to overcome this problem:

var XMLHttp=null
if (window.XMLHttpRequest)
 {
 XMLHttp=new XMLHttpRequest()
 }
else if (window.ActiveXObject)
 {
 XMLHttp=new ActiveXObject("Microsoft.XMLHTTP")
 }

Example above explained:

 PDF by Hans Home Collection

1. First create a variable XMLHttp to use as your XMLHttpRequest object. Set the value to
null.

2. Then test if the object window.XMLHttpRequest is available. This object is available in
newer versions of Firefox, Mozilla, Opera, and Safari.

3. If it's available, use it to create a new object: XMLHttp=new XMLHttpRequest()
4. If it's not available, test if an object window.ActiveXObject is available. This object is

available in Internet Explorer version 5.5 and later.
5. If it is available, use it to create a new object: XMLHttp=new ActiveXObject()

A Better Example?

Some programmers will prefer to use the newest and fastest version of the XMLHttpRequest
object.

The example below tries to load Microsoft's latest version "Msxml2.XMLHTTP", available in
Internet Explorer 6, before it falls back to "Microsoft.XMLHTTP", available in Internet Explorer 5.5
and later.

function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 // Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
return xmlHttp;
}

Example above explained:

1. First create a variable XMLHttp to use as your XMLHttpRequest object. Set the value to
null.

2. Try to create the object the according to web standards (Mozilla, Opera and
Safari):XMLHttp=new XMLHttpRequest()

3. Try to create the object the Microsoft way, available in Internet Explorer 6 and
later:XMLHttp=new ActiveXObject("Msxml2.XMLHTTP")

4. If this catches an error, try the older (Internet Explorer 5.5) way: XMLHttp=new
ActiveXObject("Microsoft.XMLHTTP")

More about the XMLHttpRequest object

If you want to read more about the XMLHttpRequest, visit our AJAX tutorial.

PHP and AJAX Suggest

 PDF by Hans Home Collection

AJAX Suggest

In the AJAX example below we will demonstrate how a web page can communicate with a web
server online as a user enters data into a web form.

Type a Name in the Box Below

First Name:

Suggestions:

This example consists of three pages:

• a simple HTML form
• a JavaScript
• a PHP page

The HTML Form

This is the HTML page. It contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script src="clienthint.js"></script>
</head>
<body>
<form>
First Name:
<input type="text" id="txt1"
onkeyup="showHint(this.value)">
</form>
<p>Suggestions: </p>
</body>
</html>

Example Explained - The HTML Form

As you can see, the HTML page above contains a simple HTML form with an input field called
"txt1".

The form works like this:

1. An event is triggered when the user presses, and releases a key in the input field
2. When the event is triggered, a function called showHint() is executed.
3. Below the form is a called "txtHint". This is used as a placeholder for the return

data of the showHint() function.

The JavaScript

The JavaScript code is stored in "clienthint.js" and linked to the HTML document:

var xmlHttp

 PDF by Hans Home Collection

function showHint(str)
{
if (str.length==0)
 {
 document.getElementById("txtHint").innerHTML=""
 return
 }
xmlHttp=GetXmlHttpObject()
if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
var url="gethint.php"
url=url+"?q="+str
url=url+"&sid="+Math.random()
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)
}

function stateChanged()
{
if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("txtHint").innerHTML=xmlHttp.responseText
 }
}
function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 // Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
return xmlHttp;
}

Example Explained

The showHint() Function

This function executes every time a character is entered in the input field.

If there is some input in the text field (str.length > 0) the function executes the following:

1. Defines the url (filename) to send to the server
2. Adds a parameter (q) to the url with the content of the input field
3. Adds a random number to prevent the server from using a cached file

 PDF by Hans Home Collection

4. Calls on the GetXmlHttpObject function to create an XMLHTTP object, and tells the object
to execute a function called stateChanged when a change is triggered

5. Opens the XMLHTTP object with the given url.
6. Sends an HTTP request to the server

If the input field is empty, the function simply clears the content of the txtHint placeholder.

The stateChanged() Function

This function executes every time the state of the XMLHTTP object changes.

When the state changes to 4 (or to "complete"), the content of the txtHint placeholder is filled
with the response text.

The GetXmlHttpObject() Function

AJAX applications can only run in web browsers with complete XML support.

The code above called a function called GetXmlHttpObject().

The purpose of the function is to solve the problem of creating different XMLHTTP objects for
different browsers.

This is explained in the previous chapter.

The PHP Page

The server page called by the JavaScript code is a simple PHP file called "gethint.php".

The code in the "gethint.php" checks an array of names and returns the corresponding names to
the client:

<?php
// Fill up array with names
$a[]="Anna";
$a[]="Brittany";
$a[]="Cinderella";
$a[]="Diana";
$a[]="Eva";
$a[]="Fiona";
$a[]="Gunda";
$a[]="Hege";
$a[]="Inga";
$a[]="Johanna";
$a[]="Kitty";
$a[]="Linda";
$a[]="Nina";
$a[]="Ophelia";
$a[]="Petunia";
$a[]="Amanda";
$a[]="Raquel";
$a[]="Cindy";
$a[]="Doris";
$a[]="Eve";
$a[]="Evita";
$a[]="Sunniva";
$a[]="Tove";
$a[]="Unni";

 PDF by Hans Home Collection

$a[]="Violet";
$a[]="Liza";
$a[]="Elizabeth";
$a[]="Ellen";
$a[]="Wenche";
$a[]="Vicky";
//get the q parameter from URL
$q=$_GET["q"];
//lookup all hints from array if length of q>0
if (strlen($q) > 0)
{
$hint="";
for($i=0; $i<count($a); $i++)
 {
 if (strtolower($q)==strtolower(substr($a[$i],0,strlen($q))))
 {
 if ($hint=="")
 {
 $hint=$a[$i];
 }
 else
 {
 $hint=$hint." , ".$a[$i];
 }
 }
 }
}

//Set output to "no suggestion" if no hint were found
//or to the correct values
if ($hint == "")
{
$response="no suggestion";
}
else
{
$response=$hint;
}

//output the response
echo $response;
?>

If there is any text sent from the JavaScript (strlen($q) > 0) the following happens:

1. Find a name matching the characters sent from the JavaScript
2. If more than one name is found, include all names in the response string
3. If no matching names were found, set response to "no suggestion"
4. If one or more matching names were found, set response to these names
5. The response is sent to the "txtHint" placeholder

PHP and AJAX XML Example

AJAX can be used for interactive communication with an XML file.

AJAX XML Example

In the AJAX example below we will demonstrate how a web page can fetch information from an
XML file using AJAX technology.

 PDF by Hans Home Collection

Select a CD in the Box Below

Select a CD:
Bob Dylan

CD info will be listed here.

This example consists of four pages:

• a simple HTML form
• an XML file
• a JavaScript
• a PHP page

The HTML Form

The example above contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script src="selectcd.js"></script>
</head>
<body>
<form>
Select a CD:
<select name="cds" onchange="showCD(this.value)">
<option value="Bob Dylan">Bob Dylan</option>
<option value="Bee Gees">Bee Gees</option>
<option value="Cat Stevens">Cat Stevens</option>
</select>
</form>
<p>
<div id="txtHint">CD info will be listed here.</div>
</p>
</body>
</html>

Example Explained

As you can see it is just a simple HTML form with a simple drop down box called "cds".

The paragraph below the form contains a div called "txtHint". The div is used as a placeholder for
info retrieved from the web server.

When the user selects data, a function called "showCD" is executed. The execution of the function
is triggered by the "onchange" event.

In other words: Each time the user changes the value in the drop down box, the function showCD
is called.

The XML File

The XML file is "cd_catalog.xml". This document contains a CD collection.

 PDF by Hans Home Collection

The JavaScript

This is the JavaScript code stored in the file "selectcd.js":

var xmlHttp

function showCD(str)
{
xmlHttp=GetXmlHttpObject()
if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
var url="getcd.php"
url=url+"?q="+str
url=url+"&sid="+Math.random()
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)
}

function stateChanged()
{
 if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("txtHint").innerHTML=xmlHttp.responseText
 }
}
function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 // Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
return xmlHttp;
}

Example Explained

The stateChanged() and GetXmlHttpObject functions are the same as in the last chapter, you can
go to the previous page for an explanation of those

The showCD() Function

If an item in the drop down box is selected the function executes the following:

1. Calls on the GetXmlHttpObject function to create an XMLHTTP object

 PDF by Hans Home Collection

2. Defines the url (filename) to send to the server
3. Adds a parameter (q) to the url with the content of the input field
4. Adds a random number to prevent the server from using a cached file
5. Call stateChanged when a change is triggered
6. Opens the XMLHTTP object with the given url.
7. Sends an HTTP request to the server

The PHP Page

The server paged called by the JavaScript, is a simple PHP file called "getcd.php".

The page is written in PHP using the XML DOM to load the XML document "cd_catalog.xml".

The code runs a query against the XML file and returns the result as HTML:

<?php
$q=$_GET["q"];
$xmlDoc = new DOMDocument();
$xmlDoc->load("cd_catalog.xml");
$x=$xmlDoc->getElementsByTagName('ARTIST');
for ($i=0; $i<=$x->length-1; $i++)
{
//Process only element nodes
if ($x->item($i)->nodeType==1)
 {
 if ($x->item($i)->childNodes->item(0)->nodeValue == $q)
 {
 $y=($x->item($i)->parentNode);
 }
 }
}
$cd=($y->childNodes);
for ($i=0;$i<$cd->length;$i++)
{
//Process only element nodes
if ($cd->item($i)->nodeType==1)
 {
 echo($cd->item($i)->nodeName);
 echo(": ");
 echo($cd->item($i)->childNodes->item(0)->nodeValue);
 echo("
");
 }
}
?>

Example Explained

When the query is sent from the JavaScript to the PHP page the following happens:

1. PHP creates an XML DOM object of the "cd_catalog.xml" file
2. All "artist" elements (nodetypes = 1) are looped through to find a name matching the

one sent from the JavaScript.
3. The CD containing the correct artist is found
4. The album information is output and sent to the "txtHint" placeholder

PHP and AJAX MySQL Database Example

AJAX can be used for interactive communication with a database.

 PDF by Hans Home Collection

AJAX Database Example

In the AJAX example below we will demonstrate how a web page can fetch information from a
MySQL database using AJAX technology.

Select a Name in the Box Below

Select a User:
Peter Griff in

User info will be listed here.

This example consists of four elements:

• a MySQL database
• a simple HTML form
• a JavaScript
• a PHP page

The Database

The database we will be using in this example looks like this:

id FirstName LastName Age Hometown Job

1 Peter Griffin 41 Quahog Brewery

2 Lois Griffin 40 Newport Piano Teacher

3 Joseph Swanson 39 Quahog Police Officer

4 Glenn Quagmire 41 Quahog Pilot

The HTML Form

The example above contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script src="selectuser.js"></script>
</head>
<body>
<form>
Select a User:
<select name="users" onchange="showUser(this.value)">
<option value="1">Peter Griffin</option>
<option value="2">Lois Griffin</option>
<option value="3">Glenn Quagmire</option>
<option value="4">Joseph Swanson</option>
</select>
</form>
<p>
<div id="txtHint">User info will be listed here.</div>
</p>
</body>
</html>

 PDF by Hans Home Collection

Example Explained - The HTML Form

As you can see it is just a simple HTML form with a drop down box called "users" with names and
the "id" from the database as option values.

The paragraph below the form contains a div called "txtHint". The div is used as a placeholder for
info retrieved from the web server.

When the user selects data, a function called "showUser()" is executed. The execution of the
function is triggered by the "onchange" event.

In other words: Each time the user changes the value in the drop down box, the function
showUser() is called.

The JavaScript

This is the JavaScript code stored in the file "selectuser.js":

var xmlHttp
function showUser(str)
{
xmlHttp=GetXmlHttpObject()
if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
var url="getuser.php"
url=url+"?q="+str
url=url+"&sid="+Math.random()
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)
}
function stateChanged()
{
if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("txtHint").innerHTML=xmlHttp.responseText
 }
}
function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 //Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }

 PDF by Hans Home Collection

 }
return xmlHttp;
}

Example Explained

The stateChanged() and GetXmlHttpObject functions are the same as in the PHP AJAX Suggest
chapter, you can go to there for an explanation of those.

The showUser() Function

If an item in the drop down box is selected the function executes the following:

1. Calls on the GetXmlHttpObject function to create an XMLHTTP object
2. Defines the url (filename) to send to the server
3. Adds a parameter (q) to the url with the content of the dropdown box
4. Adds a random number to prevent the server from using a cached file
5. Call stateChanged when a change is triggered
6. Opens the XMLHTTP object with the given url.
7. Sends an HTTP request to the server

The PHP Page

The server page called by the JavaScript, is a simple PHP file called "getuser.php".

The page is written in PHP and uses a MySQL databse.

The code runs a SQL query against a database and returns the result as an HTML table:

<?php
$q=$_GET["q"];

$con = mysql_connect('localhost', 'peter', 'abc123');
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

mysql_select_db("ajax_demo", $con);

$sql="SELECT * FROM user WHERE id = '".$q."'";

$result = mysql_query($sql);

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>
</tr>";

while($row = mysql_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 echo "<td>" . $row['Age'] . "</td>";

 PDF by Hans Home Collection

 echo "<td>" . $row['Hometown'] . "</td>";
 echo "<td>" . $row['Job'] . "</td>";
 echo "</tr>";
 }
echo "</table>";

mysql_close($con);
?>

Example Explained

When the query is sent from the JavaScript to the PHP page the following happens:

1. PHP opens a connection to a MySQL server
2. The "user" with the specified name is found
3. A table is created and the data is inserted and sent to the "txtHint" placeholder

PHP and AJAX responseXML Example

AJAX can be used to return database information as XML.

AJAX Database as XML Example

In the AJAX example below we will demonstrate how a web page can fetch information from a
MySQL database, convert it to an XML document, and use it to display information in several
different places.

This example my seem a lot like the "PHP AJAX Database" example in the last chapter, however
there is a big difference: in this example we get the data from the PHP page as XML using the
responseXML function.

Receiving the response as an XML document allows us to update this page several places, instead
of just receiving a PHP output and displaying it.

In this example we will update several elements with the information we receive from the
database.

Select a Name in the Box Below

Select a User:
Peter Griff in

This example consists of four elements:

• a MySQL database
• a simple HTML form
• a JavaScript
• a PHP page

 PDF by Hans Home Collection

The Database

The database we will be using in this example looks like this:

id FirstName LastName Age Hometown Job

1 Peter Griffin 41 Quahog Brewery

2 Lois Griffin 40 Newport Piano Teacher

3 Joseph Swanson 39 Quahog Police Officer

4 Glenn Quagmire 41 Quahog Pilot

The HTML Form

The example above contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script src="responsexml.js"></script>
</head>
<body>
<form>
Select a User:
<select name="users" onchange="showUser(this.value)">
<option value="1">Peter Griffin</option>
<option value="2">Lois Griffin</option>
<option value="3">Glenn Quagmire</option>
<option value="4">Joseph Swanson</option>
</select>
</form>
<h2>
 </h2>

<div style="text-align: right">

</div>
</body>
</html>

Example Explained - The HTML Form

• The HTML form is a drop down box called "users" with names and the "id" from the
database as option values.

• Below the form there are several different elements which are used to as
placeholders for the different values we will retrive.

• When the user selects data, a function called "showUser()" is executed. The execution of
the function is triggered by the "onchange" event.

In other words: Each time the user changes the value in the drop down box, the function
showUser() is called and outputs the result in the specified elements.

The JavaScript

This is the JavaScript code stored in the file "responsexml.js":

 PDF by Hans Home Collection

var xmlHttp
function showUser(str)
 {
 xmlHttp=GetXmlHttpObject()
 if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
 var url="responsexml.php"
 url=url+"?q="+str
 url=url+"&sid="+Math.random()
 xmlHttp.onreadystatechange=stateChanged
 xmlHttp.open("GET",url,true)
 xmlHttp.send(null)
 }
function stateChanged()
{
if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
{
 xmlDoc=xmlHttp.responseXML;
 document.getElementById("firstname").innerHTML=
 xmlDoc.getElementsByTagName("firstname")[0].childNodes[0].nodeValue;
 document.getElementById("lastname").innerHTML=
 xmlDoc.getElementsByTagName("lastname")[0].childNodes[0].nodeValue;
 document.getElementById("job").innerHTML=
 xmlDoc.getElementsByTagName("job")[0].childNodes[0].nodeValue;
 document.getElementById("age_text").innerHTML="Age: ";
 document.getElementById("age").innerHTML=
 xmlDoc.getElementsByTagName("age")[0].childNodes[0].nodeValue;
 document.getElementById("hometown_text").innerHTML="
From: ";
 document.getElementById("hometown").innerHTML=
 xmlDoc.getElementsByTagName("hometown")[0].childNodes[0].nodeValue;
 }
}
function GetXmlHttpObject()
 {
 var objXMLHttp=null
 if (window.XMLHttpRequest)
 {
 objXMLHttp=new XMLHttpRequest()
 }
 else if (window.ActiveXObject)
 {
 objXMLHttp=new ActiveXObject("Microsoft.XMLHTTP")
 }
 return objXMLHttp
 }

Example Explained

The showUser() and GetXmlHttpObject functions are the same as in the PHP AJAX Database
chapter, you can go to there for an explanation of those.

The stateChanged() Function

If an item in the drop down box is selected the function executes the following:

1. Defines the "xmlDoc" variable as an xml document using the responseXML function
2. Retrieves data from the xml documents and places them in the correct elements

 PDF by Hans Home Collection

The PHP Page

The server page called by the JavaScript, is a simple PHP file called "responsexml.php".

The page is written in PHP and uses a MySQL databse.

The code runs a SQL query against a database and returns the result as an XML document:

<?php
header('Content-Type: text/xml');
header("Cache-Control: no-cache, must-revalidate");
//A date in the past
header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
$q=$_GET["q"];
$con = mysql_connect('localhost', 'peter', 'abc123');
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("ajax_demo", $con);
$sql="SELECT * FROM user WHERE id = ".$q."";
$result = mysql_query($sql);
echo '<?xml version="1.0" encoding="ISO-8859-1"?>
<person>';
while($row = mysql_fetch_array($result))
 {
 echo "<firstname>" . $row['FirstName'] . "</firstname>";
 echo "<lastname>" . $row['LastName'] . "</lastname>";
 echo "<age>" . $row['Age'] . "</age>";
 echo "<hometown>" . $row['Hometown'] . "</hometown>";
 echo "<job>" . $row['Job'] . "</job>";
 }
echo "</person>";
mysql_close($con);
?>

Example Explained

When the query is sent from the JavaScript to the PHP page the following happens:

1. The content-type of the PHP document is set to be "text/xml"
2. The PHP document is set to "no-cache" to prevent caching
3. The $q variable is set to be the data sent from the html page
4. PHP opens a connection to a MySQL server
5. The "user" with the specified id is found
6. The data is outputted as an xml document

PHP and AJAX Live Search

AJAX can be used for a more user friendly and interactive search.

AJAX Live Search

In the AJAX example below we will demonstrate a live search, where the server gets search
results while the user types.

Live search has many benefits compared to traditional searching:

 PDF by Hans Home Collection

• Matching results are shown as you type
• Results narrow as you continue typing
• If results become too narrow, remove characters to see a broader result

Search for a W3Schools page in the Box Below

This example consists of four pages:

• a simple HTML form
• a JavaScript
• a PHP page
• an XML document

In this example the results are found in an XML document (links.xml). To make this example
small and simple, only eight results are available.

The HTML Form

This is the HTML page. It contains a simple HTML form, style for the form and a link to a
JavaScript:

<html>
<head>
<script src="livesearch.js"></script>
<style type="text/css">
#livesearch
 {
 margin:0px;
 width:194px;
 }
#txt1
 {
 margin:0px;
 }
</style>
</head>
<body>
<form>
<input type="text" id="txt1" size="30"
onkeyup="showResult(this.value)">
<div id="livesearch"></div>
</form>
</body>
</html>

Example Explained - The HTML Form

As you can see, the HTML page above contains a simple HTML form with an input field called
"txt1".

The form works like this:

1. An event is triggered when the user presses, and releases a key in the input field
2. When the event is triggered, a function called showResult() is executed.

 PDF by Hans Home Collection

3. Below the form is a <div> called "livesearch". This is used as a placeholder for the return
data of the showResult() function.

The JavaScript

The JavaScript code is stored in "livesearch.js" and linked to the HTML document:

var xmlHttp
function showResult(str)
{
if (str.length==0)
 {
 document.getElementById("livesearch").
 innerHTML="";
 document.getElementById("livesearch").
 style.border="0px";
 return
 }
xmlHttp=GetXmlHttpObject()
if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
var url="livesearch.php"
url=url+"?q="+str
url=url+"&sid="+Math.random()
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)
}

function stateChanged()
{
if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("livesearch").
 innerHTML=xmlHttp.responseText;
 document.getElementById("livesearch").
 style.border="1px solid #A5ACB2";
 }
}
function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 // Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }

 PDF by Hans Home Collection

 }
return xmlHttp;
}

Example Explained

The GetXmlHttpObject function is the same as in the PHP AJAX Suggest chapter.

The showResult() Function

This function executes every time a character is entered in the input field.

If there is no input in the text field (str.length == 0) the function sets the return field to empty
and removes any border around it.

However, if there is any input in the text field the function executes the following:

1. Defines the url (filename) to send to the server
2. Adds a parameter (q) to the url with the content of the input field
3. Adds a random number to prevent the server from using a cached file
4. Calls on the GetXmlHttpObject function to create an XMLHTTP object, and tells the object

to execute a function called stateChanged when a change is triggered
5. Opens the XMLHTTP object with the given url.
6. Sends an HTTP request to the server

The stateChanged() Function

This function executes every time the state of the XMLHTTP object changes.

When the state changes to 4 (or to "complete"), the content of the txtHint placeholder is filled
with the response text, and a border is set around the return field.

The PHP Page

The server page called by the JavaScript code is a PHP file called "livesearch.php".

The code in the "livesearch.php" checks the XML document "links.xml". This document contains
titles and URL's of some pages on W3Schools.com.

The code searches the XML file for titles matching the search string and returns the result as
HTML:

<?php
$xmlDoc = new DOMDocument();
$xmlDoc->load("links.xml");
$x=$xmlDoc->getElementsByTagName('link');
//get the q parameter from URL
$q=$_GET["q"];
//lookup all links from the xml file if length of q>0
if (strlen($q) > 0)
{
$hint="";
for($i=0; $i<($x->length); $i++)
 {
 $y=$x->item($i)->getElementsByTagName('title');
 $z=$x->item($i)->getElementsByTagName('url');
 if ($y->item(0)->nodeType==1)

 PDF by Hans Home Collection

 {
 //find a link matching the search text
 if (stristr($y->item(0)->childNodes->item(0)->nodeValue,$q))
 {
 if ($hint=="")
 {
 $hint="<a href='" .
 $z->item(0)->childNodes->item(0)->nodeValue .
 "' target='_blank'>" .
 $y->item(0)->childNodes->item(0)->nodeValue . "";
 }
 else
 {
 $hint=$hint . "
<a href='" .
 $z->item(0)->childNodes->item(0)->nodeValue .
 "' target='_blank'>" .
 $y->item(0)->childNodes->item(0)->nodeValue . "";
 }
 }
 }
 }
}
// Set output to "no suggestion" if no hint were found
// or to the correct values
if ($hint == "")
 {
 $response="no suggestion";
 }
else
 {
 $response=$hint;
 }
//output the response
echo $response;
?>

If there is any text sent from the JavaScript (strlen($q) > 0) the following happens:

1. PHP creates an XML DOM object of the "links.xml" file
2. All "title" elements (nodetypes = 1) are looped through to find a name matching the one

sent from the JavaScript
3. The link containing the correct title is found and set as the "$response" variable. If more

than one match is found, all matches are added to the variable
4. If no matches are found the $response variable is set to "no suggestion"
5. The $result variable is output and sent to the "livesearch" placeholder

PHP and AJAX RSS Reader

An RSS Reader is used to read RSS Feeds

RSS allows fast browsing for news and updates

AJAX RSS Reader

In the AJAX example below we will demonstrate an RSS reader where the content from the RSS is
loaded into the webpage without refreshing.

 PDF by Hans Home Collection

Select an RSS News Feed in the Box Below

Select an RSS-Feed:
Google New s

RSS Feed will be listed here.

This example consists of three pages:

• a simple HTML form
• a JavaScript
• a PHP page.

The HTML Form

This is the HTML page. It contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script type="text/javascript" src="getrss.js"></script>
</head>
<body>
<form>
Select an RSS-Feed:
<select onchange="showRSS(this.value)">
<option value="Google">Google News</option>
<option value="MSNBC">MSNBC News</option>
</select>
</form>
<p><div id="rssOutput">
RSS Feed will be listed here.</div></p>
</body>
</html>

Example Explained - The HTML Form

As you can see, the HTML page above contains a simple HTML form with a drop-down box.

The form works like this:

1. An event is triggered when the user selects an option in the drop down box
2. When the event is triggered, a function called showRSS() is executed.
3. Below the form is a <div> called "rssOutput". This is used as a placeholder for the return

data of the showRSS() function.

The JavaScript

The JavaScript code is stored in "getrss.js" and linked to the HTML document:

var xmlHttp
function showRSS(str)
 {
 xmlHttp=GetXmlHttpObject()
 if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return

 PDF by Hans Home Collection

 }
 var url="getrss.php"
 url=url+"?q="+str
 url=url+"&sid="+Math.random()
 xmlHttp.onreadystatechange=stateChanged
 xmlHttp.open("GET",url,true)
 xmlHttp.send(null)
 }

function stateChanged()
 {
 if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("rssOutput")
 .innerHTML=xmlHttp.responseText
 }
 }
function GetXmlHttpObject()
{
var xmlHttp=null;
try
 {
 // Firefox, Opera 8.0+, Safari
 xmlHttp=new XMLHttpRequest();
 }
catch (e)
 {
 // Internet Explorer
 try
 {
 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
return xmlHttp;
}

Example Explained

The stateChanged() and GetXmlHttpObject functions are the same as in the PHP AJAX Suggest
chapter.

The showRSS() Function

Every time an option is selected in the input field this function executes the following:

1. Defines the url (filename) to send to the server
2. Adds a parameter (q) to the url with the selected option from the drop down box
3. Adds a random number to prevent the server from using a cached file
4. Calls on the GetXmlHttpObject function to create an XMLHTTP object, and tells the object

to execute a function called stateChanged when a change is triggered
5. Opens the XMLHTTP object with the given url.
6. Sends an HTTP request to the server

The PHP Page

The server page called by the JavaScript code is a PHP file called "getrss.php":

 PDF by Hans Home Collection

<?php
//get the q parameter from URL
$q=$_GET["q"];
//find out which feed was selected
if($q=="Google")
 {
 $xml=("http://news.google.com/news?ned=us&topic=h&output=rss");
 }
elseif($q=="MSNBC")
 {
 $xml=("http://rss.msnbc.msn.com/id/3032091/device/rss/rss.xml");
 }
$xmlDoc = new DOMDocument();
$xmlDoc->load($xml);
//get elements from "<channel>"
$channel=$xmlDoc->getElementsByTagName('channel')->item(0);
$channel_title = $channel->getElementsByTagName('title')
->item(0)->childNodes->item(0)->nodeValue;
$channel_link = $channel->getElementsByTagName('link')
->item(0)->childNodes->item(0)->nodeValue;
$channel_desc = $channel->getElementsByTagName('description')
->item(0)->childNodes->item(0)->nodeValue;
//output elements from "<channel>"
echo("<p><a href='" . $channel_link
 . "'>" . $channel_title . "");
echo("
");
echo($channel_desc . "</p>");
//get and output "<item>" elements
$x=$xmlDoc->getElementsByTagName('item');
for ($i=0; $i<=2; $i++)
 {
 $item_title=$x->item($i)->getElementsByTagName('title')
 ->item(0)->childNodes->item(0)->nodeValue;
 $item_link=$x->item($i)->getElementsByTagName('link')
 ->item(0)->childNodes->item(0)->nodeValue;
 $item_desc=$x->item($i)->getElementsByTagName('description')
 ->item(0)->childNodes->item(0)->nodeValue;
 echo ("<p><a href='" . $item_link
 . "'>" . $item_title . "");
 echo ("
");
 echo ($item_desc . "</p>");
 }
?>

Example Explained - The PHP Page

When an option is sent from the JavaScript the following happens:

1. PHP finds out which RSS feed was selected
2. An XML DOM object is created for the selected RSS feed
3. The elements from the RSS channel are found and outputted
4. The three first elements from the RSS items are looped through and outputted

PHP and AJAX Poll

AJAX Suggest

In the AJAX example below we will demonstrate a poll where the web page can get the result
without reloading.

 PDF by Hans Home Collection

Do you like PHP and AJAX so far?

Yes:

No:
This example consists of four pages:

• a simple HTML form
• a JavaScript
• a PHP page
• a text file to store the results

The HTML Form

This is the HTML page. It contains a simple HTML form and a link to a JavaScript:

<html>
<head>
<script src="poll.js"></script>
</head>
<body>
<div id="poll">
<h2>Do you like PHP and AJAX so far?</h2>
<form>
Yes:
<input type="radio" name="vote"
value="0" onclick="getVote(this.value)">

No:
<input type="radio" name="vote"
value="1" onclick="getVote(this.value)">
</form>
</div>
</body>
</html>

Example Explained - The HTML Form

As you can see, the HTML page above contains a simple HTML form inside a "<div>" with two
radio buttons.

The form works like this:

1. An event is triggered when the user selects the "yes" or "no" option
2. When the event is triggered, a function called getVote() is executed.
3. Around the form is a <div> called "poll". When the data is returned from the getVote()

function, the return data will replace the form.

The Text File

The text file (poll_result.txt) is where we store the data from the poll.

It is stored like this:

0||0

 PDF by Hans Home Collection

The first number represents the "Yes" votes, the second number represents the "No" votes.

Note: Remember to allow your web server to edit the text file. Do NOT give everyone access,
just the web server (PHP).

The JavaScript

The JavaScript code is stored in "poll.js" and linked to in the HTML document:

var xmlHttp

function getVote(int)
{
xmlHttp=GetXmlHttpObject()
if (xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
var url="poll_vote.php"
url=url+"?vote="+int
url=url+"&sid="+Math.random()
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)
}

function stateChanged()
{
 if (xmlHttp.readyState==4 || xmlHttp.readyState=="complete")
 {
 document.getElementById("poll").
 innerHTML=xmlHttp.responseText;
 }
}

function GetXmlHttpObject()
{
var objXMLHttp=null
if (window.XMLHttpRequest)
 {
 objXMLHttp=new XMLHttpRequest()
 }
else if (window.ActiveXObject)
 {
 objXMLHttp=new ActiveXObject("Microsoft.XMLHTTP")
 }
return objXMLHttp
}

Example Explained

The stateChanged() and GetXmlHttpObject functions are the same as in the PHP AJAX Suggest
chapter.

The getVote() Function

This function executes when "yes" or "no" is selected in the HTML form.

 PDF by Hans Home Collection

1. Defines the url (filename) to send to the server
2. Adds a parameter (vote) to the url with the content of the input field
3. Adds a random number to prevent the server from using a cached file
4. Calls on the GetXmlHttpObject function to create an XMLHTTP object, and tells the object

to execute a function called stateChanged when a change is triggered
5. Opens the XMLHTTP object with the given url.
6. Sends an HTTP request to the server

The PHP Page

The server page called by the JavaScript code is a simple PHP file called "poll_vote.php".

<?php
$vote = $_REQUEST['vote'];
//get content of textfile
$filename = "poll_result.txt";
$content = file($filename);
//put content in array
$array = explode("||", $content[0]);
$yes = $array[0];
$no = $array[1];
if ($vote == 0)
 {
 $yes = $yes + 1;
 }
if ($vote == 1)
 {
 $no = $no + 1;
 }
//insert votes to txt file
$insertvote = $yes."||".$no;
$fp = fopen($filename,"w");
fputs($fp,$insertvote);
fclose($fp);
?>
<h2>Result:</h2>
<table>
<tr>
<td>Yes:</td>
<td>
<img src="poll.gif"
width='<?php echo(100*round($yes/($no+$yes),2)); ?>'
height='20'>
<?php echo(100*round($yes/($no+$yes),2)); ?>%
</td>
</tr>
<tr>
<td>No:</td>
<td>
<img src="poll.gif"
width='<?php echo(100*round($no/($no+$yes),2)); ?>'
height='20'>
<?php echo(100*round($no/($no+$yes),2)); ?>%
</td>
</tr>
</table>

The selected value is sent from the JavaScript and the following happens:

1. Get the content of the "poll_result.txt" file

 PDF by Hans Home Collection

2. Put the content of the file in variables and add one to the selected variable
3. Write the result to the "poll_result.txt" file
4. Output a graphical representation of the poll result

PHP Array Functions

PHP Array Introduction

The array functions allow you to manipulate arrays.

PHP supports both simple and multi-dimensional arrays. There are also specific functions for
populating arrays from database queries.

Installation

The array functions are part of the PHP core. There is no installation needed to use these
functions.

PHP Array Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
array() Creates an array 3
array_change_key_case() Returns an array with all keys in lowercase or uppercase 4
array_chunk() Splits an array into chunks of arrays 4
array_combine() Creates an array by using one array for keys and another

for its values
5

array_count_values() Returns an array with the number of occurrences for each
value

4

array_diff() Compares array values, and returns the differences 4
array_diff_assoc() Compares array keys and values, and returns the

differences
4

array_diff_key() Compares array keys, and returns the differences 5
array_diff_uassoc() Compares array keys and values, with an additional user-

made function check, and returns the differences
5

array_diff_ukey() Compares array keys, with an additional user-made
function check, and returns the differences

5

array_fill() Fills an array with values 4
array_filter() Filters elements of an array using a user-made function 4
array_flip() Exchanges all keys with their associated values in an array 4
array_intersect() Compares array values, and returns the matches 4
array_intersect_assoc() Compares array keys and values, and returns the matches 4
array_intersect_key() Compares array keys, and returns the matches 5
array_intersect_uassoc() Compares array keys and values, with an additional user-

made function check, and returns the matches
5

array_intersect_ukey() Compares array keys, with an additional user-made
function check, and returns the matches

5

array_key_exists() Checks if the specified key exists in the array 4
array_keys() Returns all the keys of an array 4
array_map() Sends each value of an array to a user-made function,

which returns new values
4

 PDF by Hans Home Collection

array_merge() Merges one or more arrays into one array 4
array_merge_recursive() Merges one or more arrays into one array 4
array_multisort() Sorts multiple or multi-dimensional arrays 4
array_pad() Inserts a specified number of items, with a specified value,

to an array
4

array_pop() Deletes the last element of an array 4
array_product() Calculates the product of the values in an array 5
array_push() Inserts one or more elements to the end of an array 4
array_rand() Returns one or more random keys from an array 4
array_reduce() Returns an array as a string, using a user-defined function 4
array_reverse() Returns an array in the reverse order 4
array_search() Searches an array for a given value and returns the key 4
array_shift() Removes the first element from an array, and returns the

value of the removed element
4

array_slice() Returns selected parts of an array 4
array_splice() Removes and replaces specified elements of an array 4
array_sum() Returns the sum of the values in an array 4
array_udiff() Compares array values in a user-made function and

returns an array
5

array_udiff_assoc() Compares array keys, and compares array values in a
user-made function, and returns an array

5

array_udiff_uassoc() Compares array keys and array values in user-made
functions, and returns an array

5

array_uintersect() Compares array values in a user-made function and
returns an array

5

array_uintersect_assoc() Compares array keys, and compares array values in a
user-made function, and returns an array

5

array_uintersect_uassoc() Compares array keys and array values in user-made
functions, and returns an array

5

array_unique() Removes duplicate values from an array 4
array_unshift() Adds one or more elements to the beginning of an array 4
array_values() Returns all the values of an array 4
array_walk() Applies a user function to every member of an array 3
array_walk_recursive() Applies a user function recursively to every member of an

array
5

arsort() Sorts an array in reverse order and maintain index
association

3

asort() Sorts an array and maintain index association 3
compact() Create array containing variables and their values 4
count() Counts elements in an array, or properties in an object 3
current() Returns the current element in an array 3
each() Returns the current key and value pair from an array 3
end() Sets the internal pointer of an array to its last element 3
extract() Imports variables into the current symbol table from an

array
3

in_array() Checks if a specified value exists in an array 4
key() Fetches a key from an array 3
krsort() Sorts an array by key in reverse order 3
ksort() Sorts an array by key 3
list() Assigns variables as if they were an array 3
natcasesort() Sorts an array using a case insensitive "natural order"

algorithm
4

natsort() Sorts an array using a "natural order" algorithm 4
next() Advance the internal array pointer of an array 3
pos() Alias of current() 3
prev() Rewinds the internal array pointer 3
range() Creates an array containing a range of elements 3
reset() Sets the internal pointer of an array to its first element 3
rsort() Sorts an array in reverse order 3
shuffle() Shuffles an array 3

 PDF by Hans Home Collection

sizeof() Alias of count() 3
sort() Sorts an array 3
uasort() Sorts an array with a user-defined function and maintain

index association
3

uksort() Sorts an array by keys using a user-defined function 3
usort() Sorts an array by values using a user-defined function 3

PHP Array Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
CASE_LOWER Used with array_change_key_case() to convert array keys

to lower case

CASE_UPPER Used with array_change_key_case() to convert array keys
to upper case

SORT_ASC Used with array_multisort() to sort in ascending order
SORT_DESC Used with array_multisort() to sort in descending order
SORT_REGULAR Used to compare items normally
SORT_NUMERIC Used to compare items numerically
SORT_STRING Used to compare items as strings
SORT_LOCALE_STRING Used to compare items as strings, based on the current

locale
4

COUNT_NORMAL
COUNT_RECURSIVE
EXTR_OVERWRITE
EXTR_SKIP
EXTR_PREFIX_SAME
EXTR_PREFIX_ALL
EXTR_PREFIX_INVALID
EXTR_PREFIX_IF_EXISTS
EXTR_IF_EXISTS
EXTR_REFS

PHP Calendar Functions

PHP Calendar Introduction

The calendar functions are useful when working with different calendar formats. The standard it is
based on is the Julian day count (Julian day count is a count of days starting from January 1,
4713 B.C.). Note that the Julian day count is not the same as the Julian calendar!

Note: To convert between calendar formats, you must first convert to Julian day count, then to
the calendar format.

Installation

The windows version of PHP has built-in support for the calendar extension. So, the calendar
functions will work automatically.

However, if you are running the Linux version of PHP, you will have to compile PHP with --enable-
calendar to get the calendar functions to work.

 PDF by Hans Home Collection

PHP Calendar Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
cal_days_in_month() Returns the number of days in a month for a specified year and

calendar
4

cal_from_jd() Converts a Julian day count into a date of a specified calendar 4
cal_info() Returns information about a given calendar 4
cal_to_jd() Converts a date to Julian day count 4
easter_date() Returns the Unix timestamp for midnight on Easter of a

specified year
3

easter_days() Returns the number of days after March 21, on which Easter
falls for a specified year

3

FrenchToJD() Converts a French Republican date to a Julian day count 3
GregorianToJD() Converts a Gregorian date to a Julian day count 3
JDDayOfWeek() Returns the day of a week 3
JDMonthName() Returns a month name 3
JDToFrench() Converts a Julian day count to a French Republican date 3
JDToGregorian() Converts a Julian day count to a Gregorian date 3
jdtojewish() Converts a Julian day count to a Jewish date 3
JDToJulian() Converts a Julian day count to a Julian date 3
jdtounix() Converts a Julian day count to a Unix timestamp 4
JewishToJD() Converts a Jewish date to a Julian day count 3
JulianToJD() Converts a Julian date to a Julian day count 3
unixtojd() Converts a Unix timestamp to a Julian day count 4

PHP Calendar Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
CAL_GREGORIAN Gregorian calendar 3
CAL_JULIAN Julian calendar 3
CAL_JEWISH Jewish calendar 3
CAL_FRENCH French Republican calendar 3
CAL_NUM_CALS 3
CAL_DOW_DAYNO 3
CAL_DOW_SHORT 3
CAL_DOW_LONG 3
CAL_MONTH_GREGORIAN_SHORT 3
CAL_MONTH_GREGORIAN_LONG 3
CAL_MONTH_JULIAN_SHORT 3
CAL_MONTH_JULIAN_LONG 3
CAL_MONTH_JEWISH 3
CAL_MONTH_FRENCH 3
CAL_EASTER_DEFAULT 4
CAL_EASTER_DEFAULT 4
CAL_EASTER_ROMAN 4
CAL_EASTER_ALWAYS_GREGORIAN 4
CAL_EASTER_ALWAYS_JULIAN 4
CAL_JEWISH_ADD_ALAFIM_GERESH 5
CAL_JEWISH_ADD_ALAFIM 5
CAL_JEWISH_ADD_GERESHAYIM 5

PHP Date / Time Functions

 PDF by Hans Home Collection

PHP Date / Time Introduction

The date/time functions allow you to extract and format the date and time on the server.

Note: These functions depend on the locale settings of the server!

Installation

The date/time functions are part of the PHP core. There is no installation needed to use these
functions.

Runtime Configuration

The behavior of the date/time functions is affected by settings in php.ini.

Date/Time configuration options:

Name Default Description Changeable
date.default_latitude "31.7667" Specifies the default latitude (available

since PHP 5). This option is used by
date_sunrise() and date_sunset()

PHP_INI_ALL

date.default_longitude "35.2333" Specifies the default longitude
(available since PHP 5). This option is
used by date_sunrise() and
date_sunset()

PHP_INI_ALL

date.sunrise_zenith "90.83" Specifies the default sunrise zenith
(available since PHP 5). This option is
used by date_sunrise() and
date_sunset()

PHP_INI_ALL

date.sunset_zenith "90.83" Specifies the default sunset zenith
(available since PHP 5). This option is
used by date_sunrise() and
date_sunset()

PHP_INI_ALL

date.timezone "" Specifies the default timezone
(available since PHP 5.1)

PHP_INI_ALL

PHP Date / Time Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
checkdate() Validates a Gregorian date 3
date_default_timezone_get() Returns the default time zone 5
date_default_timezone_set() Sets the default time zone 5
date_sunrise() Returns the time of sunrise for a given day / location 5
date_sunset() Returns the time of sunset for a given day / location 5
date() Formats a local time/date 3
getdate() Returns an array that contains date and time

information for a Unix timestamp
3

gettimeofday() Returns an array that contains current time information 3
gmdate() Formats a GMT/UTC date/time 3
gmmktime() Returns the Unix timestamp for a GMT date 3
gmstrftime() Formats a GMT/UTC time/date according to locale

settings
3

 PDF by Hans Home Collection

idate() Formats a local time/date as integer 5
localtime() Returns an array that contains the time components of

a Unix timestamp
4

microtime() Returns the microseconds for the current time 3
mktime() Returns the Unix timestamp for a date 3
strftime() Formats a local time/date according to locale settings 3
strptime() Parses a time/date generated with strftime() 5
strtotime() Parses an English textual date or time into a Unix

timestamp
3

time() Returns the current time as a Unix timestamp 3

PHP Date / Time Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
DATE_ATOM Atom (example: 2005-08-15T16:13:03+0000)
DATE_COOKIE HTTP Cookies (example: Sun, 14 Aug 2005 16:13:03

UTC)

DATE_ISO8601 ISO-8601 (example: 2005-08-14T16:13:03+0000)
DATE_RFC822 RFC 822 (example: Sun, 14 Aug 2005 16:13:03 UTC)
DATE_RFC850 RFC 850 (example: Sunday, 14-Aug-05 16:13:03 UTC)
DATE_RFC1036 RFC 1036 (example: Sunday, 14-Aug-05 16:13:03

UTC)

DATE_RFC1123 RFC 1123 (example: Sun, 14 Aug 2005 16:13:03 UTC)
DATE_RFC2822 RFC 2822 (Sun, 14 Aug 2005 16:13:03 +0000)
DATE_RSS RSS (Sun, 14 Aug 2005 16:13:03 UTC)
DATE_W3C World Wide Web Consortium (example: 2005-08-

14T16:13:03+0000)

PHP Directory Functions

PHP Directory Introduction

The directory functions allow you to retrieve information about directories and their contents.

Installation

The directory functions are part of the PHP core. There is no installation needed to use these
functions.

PHP Directory Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
chdir() Changes the current directory 3
chroot() Changes the root directory of the current process 4
dir() Opens a directory handle and returns an object 3
closedir() Closes a directory handle 3
getcwd() Returns the current directory 4
opendir() Opens a directory handle 3

 PDF by Hans Home Collection

readdir() Returns an entry from a directory handle 3
rewinddir() Resets a directory handle 3
scandir() Lists files and directories inside a specified path 5

PHP Directory Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
DIRECTORY_SEPARATOR 3
PATH_SEPARATOR 4

PHP Error and Logging Functions

PHP Error and Logging Introduction

The error and logging functions allows error handling and logging.

The error functions allow users to define error handling rules, and modify the way the errors can
be logged.

The logging functions allow users to log applications and send log messages to email, system logs
or other machines.

Installation

The error and logging functions are part of the PHP core. There is no installation needed to use
these functions.

PHP Error and Logging Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
debug_backtrace() Generates a backtrace 4
debug_print_backtrace() Prints a backtrace 5
error_get_last() Gets the last error occurred 5
error_log() Sends an error to the server error-log, to a file or to

a remote destination
4

error_reporting() Specifies which errors are reported 4
restore_error_handler() Restores the previous error handler 4
restore_exception_handler() Restores the previous exception handler 5
set_error_handler() Sets a user-defined function to handle errors 4
set_exception_handler() Sets a user-defined function to handle exceptions 5
trigger_error() Creates a user-defined error message 4

user_error() Alias of trigger_error() 4

 PDF by Hans Home Collection

PHP Error and Logging Constants

PHP: indicates the earliest version of PHP that supports the constant.

Value Constant Description PHP
1 E_ERROR Fatal run-time errors. Errors that cannot be

recovered from. Execution of the script is halted

2 E_WARNING Non-fatal run-time errors. Execution of the script is
not halted

4 E_PARSE Compile-time parse errors. Parse errors should only
be generated by the parser

8 E_NOTICE Run-time notices. The script found something that
might be an error, but could also happen when
running a script normally

16 E_CORE_ERROR Fatal errors at PHP startup. This is like an E_ERROR
in the PHP core

4

32 E_CORE_WARNING Non-fatal errors at PHP startup. This is like an
E_WARNING in the PHP core

4

64 E_COMPILE_ERROR Fatal compile-time errors. This is like an E_ERROR
generated by the Zend Scripting Engine

4

128 E_COMPILE_WARNING Non-fatal compile-time errors. This is like an
E_WARNING generated by the Zend Scripting Engine

4

256 E_USER_ERROR Fatal user-generated error. This is like an E_ERROR
set by the programmer using the PHP function
trigger_error()

4

512 E_USER_WARNING Non-fatal user-generated warning. This is like an
E_WARNING set by the programmer using the PHP
function trigger_error()

4

1024 E_USER_NOTICE User-generated notice. This is like an E_NOTICE set
by the programmer using the PHP function
trigger_error()

4

2048 E_STRICT Run-time notices. PHP suggest changes to your code
to help interoperability and compatibility of the code

5

4096 E_RECOVERABLE_ERROR Catchable fatal error. This is like an E_ERROR but
can be caught by a user defined handle (see also
set_error_handler())

5

8191 E_ALL All errors and warnings, except of level E_STRICT 5

PHP Filter Functions

PHP Filter Introduction

This PHP filters is used to validate and filter data coming from insecure sources, like user input.

Installation

The filter functions are part of the PHP core. There is no installation needed to use these
functions.

PHP Filter Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP

 PDF by Hans Home Collection

filter_has_var() Checks if a variable of a specified input type exist 5
filter_id() Returns the ID number of a specified filter 5
filter_input() Get input from outside the script and filter it 5
filter_input_array() Get multiple inputs from outside the script and filters them 5
filter_list() Returns an array of all supported filters 5
filter_var_array() Get multiple variables and filter them 5
filter_var() Get a variable and filter it 5

PHP Filters
ID Name Description
FILTER_CALLBACK Call a user-defined function to filter data
FILTER_SANITIZE_STRING Strip tags, optionally strip or encode special

characters
FILTER_SANITIZE_STRIPPED Alias of "string" filter
FILTER_SANITIZE_ENCODED URL-encode string, optionally strip or encode

special characters
FILTER_SANITIZE_SPECIAL_CHARS HTML-escape '"<>& and characters with ASCII

value less than 32
FILTER_SANITIZE_EMAIL Remove all characters, except letters, digits and

!#$%&'*+-/=?^_`{|}~@.[]
FILTER_SANITIZE_URL Remove all characters, except letters, digits and

$-_.+!*'(),{}|\\^~[]`<>#%";/?:@&=
FILTER_SANITIZE_NUMBER_INT Remove all characters, except digits and +-
FILTER_SANITIZE_NUMBER_FLOAT Remove all characters, except digits, +- and

optionally .,eE
FILTER_SANITIZE_MAGIC_QUOTES Apply addslashes()
FILTER_UNSAFE_RAW Do nothing, optionally strip or encode special

characters
FILTER_VALIDATE_INT Validate value as integer, optionally from the

specified range
FILTER_VALIDATE_BOOLEAN Return TRUE for "1", "true", "on" and "yes",

FALSE for "0", "false", "off", "no", and "", NULL
otherwise

FILTER_VALIDATE_FLOAT Validate value as float
FILTER_VALIDATE_REGEXP Validate value against regexp, a Perl-compatible

regular expression
FILTER_VALIDATE_URL Validate value as URL, optionally with required

components
FILTER_VALIDATE_EMAIL Validate value as e-mail
FILTER_VALIDATE_IP Validate value as IP address, optionally only

IPv4 or IPv6 or not from private or reserved
ranges

PHP FTP Functions

PHP FTP Introduction

The FTP functions give client access to file servers through the File Transfer Protocol (FTP).

The FTP functions are used to open, login and close connections, as well as upload, download,
rename, delete, and get information on files from file servers. Not all of the FTP functions will
work with every server or return the same results. The FTP functions became available with PHP
3.

These functions are meant for detailed access to an FTP server. If you only wish to read from or
write to a file on an FTP server, consider using the ftp:// wrapper with the Filesystem functions.

 PDF by Hans Home Collection

Installation

The windows version of PHP has built-in support for the FTP extension. So, the FTP functions will
work automatically.

However, if you are running the Linux version of PHP, you will have to compile PHP with --enable-
ftp (PHP 4+) or --with-ftp (PHP 3) to get the FTP functions to work.

PHP FTP Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
ftp_alloc() Allocates space for a file to be uploaded to the FTP server 5
ftp_cdup() Changes the current directory to the parent directory on the

FTP server
3

ftp_chdir() Changes the current directory on the FTP server 3
ftp_chmod() Sets permissions on a file via FTP 5
ftp_close() Closes an FTP connection 4
ftp_connect() Opens an FTP connection 3
ftp_delete() Deletes a file on the FTP server 3
ftp_exec() Executes a program/command on the FTP server 4
ftp_fget() Downloads a file from the FTP server and saves it to an open

file
3

ftp_fput() Uploads from an open file and saves it to a file on the FTP
server

3

ftp_get_option() Returns runtime behaviors of the FTP connection 4
ftp_get() Downloads a file from the FTP server 3
ftp_login() Logs on to an FTP connection 3
ftp_mdtm() Returns the last modified time of a specified file 3
ftp_mkdir() Creates a new directory on the FTP server 3
ftp_nb_continue() Continues retrieving/sending a file (non-blocking) 4
ftp_nb_fget() Downloads a file from the FTP server and saves it to an open

file (non-blocking)
4

ftp_nb_fput() Uploads from an open file and saves it to a file on the FTP
server (non-blocking)

4

ftp_nb_get() Downloads a file from the FTP server (non-blocking) 4
ftp_nb_put() Uploads a file to the FTP server (non-blocking) 4
ftp_nlist() Lists the files in a specified directory on the FTP server 3
ftp_pasv() Turns passive mode on or off 3
ftp_put() Uploads a file to the FTP server 3
ftp_pwd() Returns the current directory name 3
ftp_quit() Alias of ftp_close() 3
ftp_raw() Sends a raw command to the FTP server 5
ftp_rawlist() Returns a detailed list of files in the specified directory 3
ftp_rename() Renames a file or directory on the FTP server 3
ftp_rmdir() Removes a directory on the FTP server 3
ftp_set_option() Sets runtime options for the FTP connection 4
ftp_site() Sends a SITE command to the server 3
ftp_size() Returns the size of the specified file 3
ftp_ssl_connect() Opens a secure SSL-FTP connection 4
ftp_systype() Returns the system type identifier of the FTP server 3

 PDF by Hans Home Collection

PHP FTP Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
FTP_ASCII 3
FTP_TEXT 3
FTP_BINARY 3
FTP_IMAGE 3
FTP_TIMEOUT_SEC 3
FTP_AUTOSEEK 4
FTP_AUTORESUME Determine resume position and start position for get and put

requests automatically
4

FTP_FAILED Asynchronous transfer has failed 4
FTP_FINISHED Asynchronous transfer has finished 4
FTP_MOREDATA Asynchronous transfer is still active 4

PHP HTTP Functions

PHP HTTP Introduction

The HTTP functions let you manipulate information sent to the browser by the Web server, before
any other output has been sent.

Installation

The directory functions are part of the PHP core. There is no installation needed to use these
functions.

PHP HTTP Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
header() Sends a raw HTTP header to a client 3
headers_list() Returns a list of response headers sent (or ready to

send)
5

headers_sent() Checks if / where the HTTP headers have been sent 3
setcookie() Sends an HTTP cookie to a client 3
setrawcookie() Sends an HTTP cookie without URL encoding the cookie

value
5

PHP HTTP Constants

None.

PHP libxml Functions

PHP libxml Introduction

The libxml functions and constants are used together with SimpleXML, XSLT and DOM functions.

 PDF by Hans Home Collection

Installation

These functions require the libxml package. Download at xmlsoft.org

PHP libxml Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
libxml_clear_errors() Clear libxml error buffer 5
libxml_get_errors() Retrieve array of errors 5
libxml_get_last_error() Retrieve last error from libxml 5
libxml_set_streams_context() Set the streams context for the next libxml document

load or write
5

libxml_use_internal_errors() Disable libxml errors and allow user to fetch error
information as needed

5

PHP libxml Constants

Function Description PHP
LIBXML_COMPACT Set small nodes allocation optimization. This may

improve the application performance
5

LIBXML_DTDATTR Set default DTD attributes 5
LIBXML_DTDLOAD Load external subset 5
LIBXML_DTDVALID Validate with the DTD 5
LIBXML_NOBLANKS Remove blank nodes 5
LIBXML_NOCDATA Set CDATA as text nodes 5
LIBXML_NOEMPTYTAG Change empty tags (e.g.
 to
</br>), only

available in the DOMDocument->save() and
DOMDocument->saveXML() functions

5

LIBXML_NOENT Substitute entities 5
LIBXML_NOERROR Do not show error reports 5
LIBXML_NONET Stop network access while loading documents 5
LIBXML_NOWARNING Do not show warning reports 5
LIBXML_NOXMLDECL Drop the XML declaration when saving a document 5
LIBXML_NSCLEAN Remove excess namespace declarations 5
LIBXML_XINCLUDE Use XInclude substitution 5
LIBXML_ERR_ERROR Get recoverable errors 5
LIBXML_ERR_FATAL Get fatal errors 5
LIBXML_ERR_NONE Get no errors 5
LIBXML_ERR_WARNING Get simple warnings 5
LIBXML_VERSION Get libxml version (e.g. 20605 or 20617) 5
LIBXML_DOTTED_VERSION Get dotted libxml version (e.g. 2.6.5 or 2.6.17) 5

PHP Mail Functions

PHP Mail Introduction

The mail() function allows you to send emails directly from a script.

 PDF by Hans Home Collection

Requirements

For the mail functions to be available, PHP requires an installed and working email system. The
program to be used is defined by the configuration settings in the php.ini file.

Installation

The mail functions are part of the PHP core. There is no installation needed to use these functions.

Runtime Configuration

The behavior of the mail functions is affected by settings in the php.ini file.

Mail configuration options:

Name Default Description Changeable
SMTP "localhost" Windows only: The DNS name or IP

address of the SMTP server
PHP_INI_ALL

smtp_port "25" Windows only: The SMTP port number.
Available since PHP 4.3

PHP_INI_ALL

sendmail_from NULL Windows only: Specifies the "from"
address to be used in email sent from
PHP

PHP_INI_ALL

sendmail_path NULL Unix systems only: Specifies where the
sendmail program can be found (usually
/usr/sbin/sendmail or /usr/lib/sendmail)

PHP_INI_SYSTEM

PHP Mail Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
ezmlm_hash() Calculates the hash value needed by the EZMLM mailing list system 3
mail() Allows you to send emails directly from a script 3

PHP Mail Constants

None.

PHP Math Functions

PHP Math Introduction

The math functions can handle values within the range of integer and float types.

 PDF by Hans Home Collection

Installation

The math functions are part of the PHP core. There is no installation needed to use these
functions.

PHP Math Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
abs() Returns the absolute value of a number 3
acos() Returns the arccosine of a number 3
acosh() Returns the inverse hyperbolic cosine of a number 4
asin() Returns the arcsine of a number 3
asinh() Returns the inverse hyperbolic sine of a number 4
atan() Returns the arctangent of a number as a numeric value

between -PI/2 and PI/2 radians
3

atan2() Returns the angle theta of an (x,y) point as a numeric value
between -PI and PI radians

3

atanh() Returns the inverse hyperbolic tangent of a number 4
base_convert() Converts a number from one base to another 3
bindec() Converts a binary number to a decimal number 3
ceil() Returns the value of a number rounded upwards to the nearest

integer
3

cos() Returns the cosine of a number 3
cosh() Returns the hyperbolic cosine of a number 4
decbin() Converts a decimal number to a binary number 3
dechex() Converts a decimal number to a hexadecimal number 3
decoct() Converts a decimal number to an octal number 3
deg2rad() Converts a degree to a radian number 3
exp() Returns the value of Ex 3
expm1() Returns the value of Ex - 1 4
floor() Returns the value of a number rounded downwards to the

nearest integer
3

fmod() Returns the remainder (modulo) of the division of the
arguments

4

getrandmax() Returns the maximum random number that can be returned by
a call to the rand() function

3

hexdec() Converts a hexadecimal number to a decimal number 3
hypot() Returns the length of the hypotenuse of a right-angle triangle 4
is_finite() Returns true if a value is a finite number 4
is_infinite() Returns true if a value is an infinite number 4
is_nan() Returns true if a value is not a number 4
lcg_value() Returns a pseudo random number in the range of (0,1) 4
log() Returns the natural logarithm (base E) of a number 3
log10() Returns the base-10 logarithm of a number 3
log1p() Returns log(1+number) 4
max() Returns the number with the highest value of two specified

numbers
3

min() Returns the number with the lowest value of two specified
numbers

3

mt_getrandmax() Returns the largest possible value that can be returned by
mt_rand()

3

mt_rand() Returns a random integer using Mersenne Twister algorithm 3
mt_srand() Seeds the Mersenne Twister random number generator 3
octdec() Converts an octal number to a decimal number 3
pi() Returns the value of PI 3

 PDF by Hans Home Collection

pow() Returns the value of x to the power of y 3
rad2deg() Converts a radian number to a degree 3
rand() Returns a random integer 3
round() Rounds a number to the nearest integer 3
sin() Returns the sine of a number 3
sinh() Returns the hyperbolic sine of a number 4
sqrt() Returns the square root of a number 3
srand() Seeds the random number generator 3
tan() Returns the tangent of an angle 3
tanh() Returns the hyperbolic tangent of an angle 4

PHP Math Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
M_E Returns e (approx. 2.718) 4
M_EULER Returns Euler's constant (approx. 0.577) 4
M_LNPI Returns the natural logarithm of PI (approx. 1.144) 4
M_LN2 Returns the natural logarithm of 2 (approx. 0.693) 4
M_LN10 Returns the natural logarithm of 10 (approx. 2.302) 4
M_LOG2E Returns the base-2 logarithm of E (approx. 1.442) 4
M_LOG10E Returns the base-10 logarithm of E (approx. 0.434) 4
M_PI Returns PI (approx. 3.14159) 3
M_PI_2 Returns PI/2 (approx. 1.570) 4
M_PI_4 Returns PI/4 (approx. 0.785) 4
M_1_PI Returns 1/PI (approx. 0.318) 4
M_2_PI Returns 2/PI (approx. 0.636) 4
M_SQRTPI Returns the square root of PI (approx. 1.772) 4
M_2_SQRTPI Returns 2/square root of PI (approx. 1.128) 4
M_SQRT1_2 Returns the square root of 1/2 (approx. 0.707) 4
M_SQRT2 Returns the square root of 2 (approx. 1.414) 4
M_SQRT3 Returns the square root of 3 (approx. 1.732) 4

PHP Misc. Functions

PHP Miscellaneous Introduction

The misc. functions were only placed here because none of the other categories seemed to fit.

Installation

The misc functions are part of the PHP core. There is no installation needed to use these
functions.

Runtime Configuration

The behavior of the misc functions is affected by settings in the php.ini file.

Misc. configuration options:

 PDF by Hans Home Collection

Name Default Description Changeable
ignore_user_abort "0" FALSE indicates that scripts will be

terminated as soon as they try to output
something after a client has aborted
their connection

PHP_INI_ALL

highlight.string "#DD0000" Color for highlighting a string in PHP
syntax

PHP_INI_ALL

highlight.comment "#FF8000" Color for highlighting PHP comments PHP_INI_ALL
highlight.keyword "#007700" Color for syntax highlighting PHP

keywords (e.g. parenthesis and
semicolon)

PHP_INI_ALL

highlight.bg "#FFFFFF" Color for background PHP_INI_ALL
highlight.default "#0000BB" Default color for PHP syntax PHP_INI_ALL
highlight.html "#000000" Color for HTML code PHP_INI_ALL
browscap NULL Name and location of browser-

capabilities file (e.g. browscap.ini)
PHP_INI_SYSTEM

PHP Misc. Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
connection_aborted() Checks whether the client has disconnected 3
connection_status() Returns the current connection status 3
connection_timeout() Deprecated in PHP 4.0.5 3
constant() Returns the value of a constant 4
define() Defines a constant 3
defined() Checks whether a constant exists 3
die() Prints a message and exits the current script 3
eval() Evaluates a string as PHP code 3
exit() Prints a message and exits the current script 3
get_browser() Returns the capabilities of the user's browser 3
highlight_file() Outputs a file with the PHP syntax highlighted 4
highlight_string() Outputs a string with the PHP syntax highlighted 4
ignore_user_abort() Sets whether a remote client can abort the running of a script 3
pack() Packs data into a binary string 3
php_check_syntax() Deprecated in PHP 5.0.5 5
php_strip_whitespace() Returns the source code of a file with PHP comments and

whitespace removed
5

show_source() Alias of highlight_file() 4
sleep() Delays code execution for a number of seconds 3
time_nanosleep() Delays code execution for a number of seconds and

nanoseconds
5

time_sleep_until() Delays code execution until a specified time 5
uniqid() Generates a unique ID 3
unpack() Unpacks data from a binary string 3
usleep() Delays code execution for a number of microseconds 3

PHP Misc. Constants

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
CONNECTION_ABORTED
CONNECTION_NORMAL

 PDF by Hans Home Collection

CONNECTION_TIMEOUT
__COMPILER_HALT_OFFSET__ 5

PHP MySQL Functions

PHP MySQL Introduction

The MySQL functions allows you to access MySQL database servers.

Installation

For the MySQL functions to be available, you must compile PHP with MySQL support.

For compiling, use --with-mysql=DIR (the optional DIR points to the MySQL directory).

Note: For full functionality of MySQL versions greater than 4.1., use the MySQLi extension
instead. If you would like to install both the mysql extension and the mysqli extension you should
use the same client library to avoid any conflicts.

Installation on Linux Systems

PHP 5+: MySQL and the MySQL library is not enabled by default. Use the --with-mysql=DIR
configure option to include MySQL support and download headers and libraries from
www.mysql.com.

Installation on Windows Systems

PHP 5+: MySQL is not enabled by default, so the php_mysql.dll must be enabled inside of
php.ini. Also, PHP needs access to the MySQL client library. A file named libmysql.dll is included in
the Windows PHP distribution, and in order for PHP to talk to MySQL this file needs to be available
to the Windows systems PATH.

To enable any PHP extension, the PHP extension_dir setting (in the php.ini file) should be set to
the directory where the PHP extensions are located. An example extension_dir value is
c:\php\ext.

Note: If you get the following error when starting the web server: "Unable to load dynamic library
'./php_mysql.dll'", this is because php_mysql.dll or libmysql.dll cannot be found by the system.

Runtime Configuration

The behavior of the MySQL functions is affected by settings in the php.ini file.

MySQL configuration options:

Name Default Description Changeable
mysql.allow_persistent "1" Whether or not to allow persistent

connections
PHP_INI_SYSTEM

mysql.max_persistent "-1" The maximum number of persistent
connections per process

PHP_INI_SYSTEM

mysql.max_links "-1" The maximum number of connections
per process (persistent connections
included)

PHP_INI_SYSTEM

mysql.trace_mode "0" Trace mode. When set to "1", warnings PHP_INI_ALL

 PDF by Hans Home Collection

and SQL-errors will be displayed.
Available since PHP 4.3

mysql.default_port NULL The default TCP port number to use PHP_INI_ALL
mysql.default_socket NULL The default socket name to use.

Available since PHP 4.0.1
PHP_INI_ALL

mysql.default_host NULL The default server host to use (doesn't
apply in SQL safe mode)

PHP_INI_ALL

mysql.default_user NULL The default user name to use (doesn't
apply in SQL safe mode)

PHP_INI_ALL

mysql.default_passwordNULL The default password to use (doesn't
apply in SQL safe mode)

PHP_INI_ALL

mysql.connect_timeout "60" Connection timeout in seconds PHP_INI_ALL

Resource Types

There are two resource types used in the MySQL extension. The first one is the link_identifier for
a database connection, the second is a resource which holds the result of a query.

Note: Most MySQL functions accept link_identifier as the last optional parameter. If it is not
provided, the last opened connection is used.

PHP MySQL Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
mysql_affected_rows() Returns the number of affected rows in the previous

MySQL operation
3

mysql_change_user() Deprecated. Changes the user of the current MySQL
connection

3

mysql_client_encoding() Returns the name of the character set for the current
connection

4

mysql_close() Closes a non-persistent MySQL connection 3
mysql_connect() Opens a non-persistent MySQL connection 3
mysql_create_db() Deprecated. Creates a new MySQL database. Use

mysql_query() instead
3

mysql_data_seek() Moves the record pointer 3
mysql_db_name() Returns a database name from a call to mysql_list_dbs() 3
mysql_db_query() Deprecated. Sends a MySQL query. Use mysql_select_db()

and mysql_query() instead
3

mysql_drop_db() Deprecated. Deletes a MySQL database. Use
mysql_query() instead

3

mysql_errno() Returns the error number of the last MySQL operation 3
mysql_error() Returns the error description of the last MySQL operation 3
mysql_escape_string() Deprecated. Escapes a string for use in a mysql_query.

Use mysql_real_escape_string() instead
4

mysql_fetch_array() Returns a row from a recordset as an associative array
and/or a numeric array

3

mysql_fetch_assoc() Returns a row from a recordset as an associative array 4
mysql_fetch_field() Returns column info from a recordset as an object 3
mysql_fetch_lengths() Returns the length of the contents of each field in a result

row
3

mysql_fetch_object() Returns a row from a recordset as an object 3
mysql_fetch_row() Returns a row from a recordset as a numeric array 3
mysql_field_flags() Returns the flags associated with a field in a recordset 3
mysql_field_len() Returns the maximum length of a field in a recordset 3

 PDF by Hans Home Collection

mysql_field_name() Returns the name of a field in a recordset 3
mysql_field_seek() Moves the result pointer to a specified field 3
mysql_field_table() Returns the name of the table the specified field is in 3
mysql_field_type() Returns the type of a field in a recordset 3
mysql_free_result() Free result memory 3
mysql_get_client_info() Returns MySQL client info 4
mysql_get_host_info() Returns MySQL host info 4
mysql_get_proto_info() Returns MySQL protocol info 4
mysql_get_server_info() Returns MySQL server info 4
mysql_info() Returns information about the last query 4
mysql_insert_id() Returns the AUTO_INCREMENT ID generated from the

previous INSERT operation
3

mysql_list_dbs() Lists available databases on a MySQL server 3
mysql_list_fields() Deprecated. Lists MySQL table fields. Use mysql_query()

instead
3

mysql_list_processes() Lists MySQL processes 4
mysql_list_tables() Deprecated. Lists tables in a MySQL database. Use

mysql_query() instead
3

mysql_num_fields() Returns the number of fields in a recordset 3
mysql_num_rows() Returns the number of rows in a recordset 3
mysql_pconnect() Opens a persistent MySQL connection 3
mysql_ping() Pings a server connection or reconnects if there is no

connection
4

mysql_query() Executes a query on a MySQL database 3
mysql_real_escape_string() Escapes a string for use in SQL statements 4
mysql_result() Returns the value of a field in a recordset 3
mysql_select_db() Sets the active MySQL database 3
mysql_stat() Returns the current system status of the MySQL server 4
mysql_tablename() Deprecated. Returns the table name of field. Use

mysql_query() instead
3

mysql_thread_id() Returns the current thread ID 4
mysql_unbuffered_query() Executes a query on a MySQL database (without fetching /

buffering the result)
4

PHP MySQL Constants

Since PHP 4.3 it has been possible to specify additional flags for the mysql_connect() and
mysql_pconnect() functions:

PHP: indicates the earliest version of PHP that supports the constant.

Constant Description PHP
MYSQL_CLIENT_COMPRESS Use compression protocol 4.3
MYSQL_CLIENT_IGNORE_SPACE Allow space after function names 4.3

MYSQL_CLIENT_INTERACTIVE Allow interactive timeout seconds of inactivity
before closing the connection

4.3

MYSQL_CLIENT_SSL Use SSL encryption (only available with version
4+ of the MySQL client library)

4.3

The mysql_fetch_array() function uses a constant for the different types of result arrays. The
following constants are defined:

Constant Description PHP
MYSQL_ASSOC Columns are returned into the array with the fieldname as the array

index

MYSQL_BOTH Columns are returned into the array having both a numerical index
and the fieldname as the array index

 PDF by Hans Home Collection

MYSQL_NUM Columns are returned into the array having a numerical index (index
starts at 0)

PHP SimpleXML Functions

PHP SimpleXML Introduction

The SimpleXML functions lets you convert XML to an object.

This object can be processed, like any other object, with normal property selectors and array
iterators.

Some of these functions requires the newest PHP build.

Installation

The SimpleXML functions are part of the PHP core. There is no installation needed to use these
functions.

PHP SimpleXML Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
__construct() Creates a new SimpleXMLElement object 5
addAttribute() Adds an attribute to the SimpleXML element 5
addChild() Adds a child element the SimpleXML element 5
asXML() Gets an XML string from a SimpleXML element 5
attributes() Gets a SimpleXML element's attributes 5
children() Gets the children of a specified node 5
getDocNamespaces() Gets the namespaces of an XML document 5
getName() Gets the name of a SimpleXML element 5
getNamespaces() Gets the namespaces from XML data 5
registerXPathNamespace() Creates a namespace context for the next XPath query 5
simplexml_import_dom() Gets a SimpleXMLElement object from a DOM node 5
simplexml_load_file() Gets a SimpleXMLElement object from an XML document 5
simplexml_load_string() Gets a SimpleXMLElement object from an XML string 5
xpath() Runs an XPath query on XML data 5

PHP SimpleXML Constants
None

PHP XML Parser Functions

PHP XML Parser Introduction

The XML functions lets you parse, but not validate, XML documents.

XML is a data format for standardized structured document exchange. More information on XML
can be found in our XML Tutorial.

 PDF by Hans Home Collection

This extension uses the Expat XML parser.

Expat is an event-based parser, it views an XML document as a series of events. When an event
occurs, it calls a specified function to handle it.

Expat is a non-validating parser, and ignores any DTDs linked to a document. However, if the
document is not well formed it will end with an error message.

Because it is an event-based, non validating parser, Expat is fast and well suited for web
applications.

The XML parser functions lets you create XML parsers and define handlers for XML events.

Installation

The XML functions are part of the PHP core. There is no installation needed to use these functions.

PHP XML Parser Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
utf8_decode() Decodes an UTF-8 string to ISO-8859-1 3
utf8_encode() Encodes an ISO-8859-1 string to UTF-8 3
xml_error_string() Gets an error string from the XML parser 3
xml_get_current_byte_index() Gets the current byte index from the XML

parser
3

xml_get_current_column_number() Gets the current column number from
the XML parser

3

xml_get_current_line_number() Gets the current line number from the
XML parser

3

xml_get_error_code() Gets an error code from the XML parser 3
xml_parse() Parses an XML document 3
xml_parse_into_struct() Parse XML data into an array 3
xml_parser_create_ns() Create an XML parser with namespace

support
4

xml_parser_create() Create an XML parser 3
xml_parser_free() Free an XML parser 3
xml_parser_get_option() Get options from an XML parser 3
xml_parser_set_option() Set options in an XML parser 3
xml_set_character_data_handler() Set handler function for character data 3
xml_set_default_handler() Set default handler function 3
xml_set_element_handler() Set handler function for start and end

element of elements
3

xml_set_end_namespace_decl_handler() Set handler function for the end of
namespace declarations

4

xml_set_external_entity_ref_handler() Set handler function for external entities 3
xml_set_notation_decl_handler() Set handler function for notation

declarations
3

xml_set_object() Use XML Parser within an object 4
xml_set_processing_instruction_handler() Set handler function for processing

instruction
3

xml_set_start_namespace_decl_handler() Set handler function for the start of
namespace declarations

4

xml_set_unparsed_entity_decl_handler() Set handler function for unparsed entity 3

 PDF by Hans Home Collection

declarations

PHP XML Parser Constants
Constant
XML_ERROR_NONE (integer)
XML_ERROR_NO_MEMORY (integer)
XML_ERROR_SYNTAX (integer)
XML_ERROR_NO_ELEMENTS (integer)
XML_ERROR_INVALID_TOKEN (integer)
XML_ERROR_UNCLOSED_TOKEN (integer)
XML_ERROR_PARTIAL_CHAR (integer)
XML_ERROR_TAG_MISMATCH (integer)
XML_ERROR_DUPLICATE_ATTRIBUTE (integer)
XML_ERROR_JUNK_AFTER_DOC_ELEMENT (integer)
XML_ERROR_PARAM_ENTITY_REF (integer)
XML_ERROR_UNDEFINED_ENTITY (integer)
XML_ERROR_RECURSIVE_ENTITY_REF (integer)
XML_ERROR_ASYNC_ENTITY (integer)
XML_ERROR_BAD_CHAR_REF (integer)
XML_ERROR_BINARY_ENTITY_REF (integer)
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF (integer)
XML_ERROR_MISPLACED_XML_PI (integer)
XML_ERROR_UNKNOWN_ENCODING (integer)
XML_ERROR_INCORRECT_ENCODING (integer)
XML_ERROR_UNCLOSED_CDATA_SECTION (integer)
XML_ERROR_EXTERNAL_ENTITY_HANDLING (integer)
XML_OPTION_CASE_FOLDING (integer)
XML_OPTION_TARGET_ENCODING (integer)
XML_OPTION_SKIP_TAGSTART (integer)
XML_OPTION_SKIP_WHITE (integer)

PHP Zip File Functions

PHP Zip File Introduction

The Zip files functions allows you to read ZIP files.

Installation

For the Zip file functions to work on your server, these libraries must be installed:

• The ZZIPlib library by Guido Draheim: Download the ZZIPlib library
• The Zip PELC extension: Download the Zip PELC extension

Installation on Linux Systems

PHP 5+: Zip functions and the Zip library is not enabled by default and must be downloaded from
the links above. Use the --with-zip=DIR configure option to include Zip support.

Installation on Windows Systems

PHP 5+: Zip functions is not enabled by default, so the php_zip.dll and the ZZIPlib library must
be downloaded from the link above. php_zip.dll must be enabled inside of php.ini.

 PDF by Hans Home Collection

To enable any PHP extension, the PHP extension_dir setting (in the php.ini file) should be set to
the directory where the PHP extensions are located. An example extension_dir value is
c:\php\ext.

PHP Zip File Functions

PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
zip_close() Closes a ZIP file 4
zip_entry_close() Closes an entry in the ZIP file 4
zip_entry_compressedsize() Returns the compressed size of an entry in the ZIP

file
4

zip_entry_compressionmethod() Returns the compression method of an entry in the
ZIP file

4

zip_entry_filesize() Returns the actual file size of an entry in the ZIP file 4
zip_entry_name() Returns the name of an entry in the ZIP file 4
zip_entry_open() Opens an entry in the ZIP file for reading 4
zip_entry_read() Reads from an open entry in the ZIP file 4
zip_open() Opens a ZIP file 4
zip_read() Reads the next entry in a ZIP file 4

PHP Zip File Constants

NONE

