CODES

BCD, XS-3, Gray Code, Alphanumeric Codes
(ASCII, EBCDIC), Error detecting and correcting
codes (Parity Code, Hamming Code)

Amraja Shivkar

Classification of codes

Codes

Weighted
Codes

Non-weighted
Code

Reflective Sequential

Codes

Code

Alpha
numeric

Error
detecting and
correcting
Codes

Weighted Codes

Obey positional weight principle.

A specific weight is assigned to each position of the number.
Eg.: Binary, BCD codes

Non-weighted Codes

Do not obey positional weight principle.
Positional weights are not assigned.

Eg.: excess-3 code, Gray code

Reflective Codes

A code is said to be reflective when code for 9 is complement of code for 0, code for
8 is complement of code for 1, code for 7 is complement of code for 2, code for 6 is
complement of code for 3, code for 5 is complement of code for 4.

Reflectivity is desirable when 9’s complement has to be found.
Eg.: excess-3 code

Sequential Codes

A code is said to be sequential when each succeeding code is one binary number
greater than preceding code.

Eg.: Binary, XS-3

Alphanumeric Codes

Designed to represent numbers as well as alphabetic characters.
Capable of representing symbols as well as instructions.

Eg.: ASCII, EBCDIC

Error Detecting and Correcting Codes

When digital data is transmitted from one system to another, an unwanted electrical
disturbance called ‘noise’ may get added to it.

This can cause an ‘error’ in digital information. That means a 0 can changeto 1 or 1
can change to O.

To detect and correct such errors special type of codes capable of detecting and
correcting the errors are used.

Eg.: Parity code, Homming code

BCD(Binary Coded Decimal) Code

* |In this code each digit is represented by a 4-bit binary number.

* The positional weights assigned to the binary digits in BCD code are 8-4-2-1 with 1
corresponding to LSB and 8 corresponding to MSB.

Positional 8 4 2 1
Weights 23 22 1 20
MSB LSB

* Other BCD codes like 7-4-2-1, 5-4-2-1 etc also exist.

Conversion from decimal to BCD
* The decimal digits 0 to 9 are converted into BCD, exactly in the same way as binary.

Digital | 0 1 2 3 4 5 6 7 8 9
BCD | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001

Invalid BCD codes:

* With 4 bits we can represent total sixteen numbers (0000 to 1111) but in BCD only
first ten codes are used (0000 to 1001)

* Therefore remaining six codes (1010 to 1111)are invalid in BCD

Conversion of bigger decimal numbers to BCD:
* Express each decimal digit with its equivalent 4-bit BCD code
* Eg.: Convert (964),, to its equivalent BCD code.

Decimal Number - 9 6 4

Binary Equivalent - 1001 0110 0100

There fore (964),, = (1001 0110 0100)gp

* Hence smallest numberin BCD is 0000 i.e., 0 and largest is 1001 i.e., 9 after
which 10 will be expressed by combinations i.e., 0001 0000 and is known as
packed BCD

Comparison with Binary:

* Less efficient than binary, since conversion of a decimal number into BCD
needs more bits than in binary

Eg., (22),,=(10110), = (0010 0010),, So BCD uses more bits than binary for
the same decimal number.

* BCD arithmetic is more complicated than binary arithmetic.
 BCD - decimal conversion is simpler than Binary — decimal conversion.

Advantages of BCD codes:
* Its similar to decimal number system.
* We need to remember binary equivalents of decimal numbers 0 to 9 only.

* Conversions from decimal to BCD or BCD to decimal is very simple and no
calculation is needed.

Disadvantages of BCD codes:

* Less efficient than binary, since conversion of a decimal number into BCD
needs more bits than in binary

* BCD arithmetic is more complicated than binary arithmetic.
Convert following decimal numbers to BCD:
(a) 164 (b) 4297 (c) 8065

Convert following BCD codes to decimal equivalent:
(a) 10011000 (b)000101000110 (c)0O11100110101

Convert following binary numbers to BCD codes: (Hint: convert to decimal first)
(a) 1100 (b)10001 (c) 1010101

Convert following BCD codes to binary equivalent: (Hint: convert to decimal first)
(a) 00101000 (b) 10010111 (c) 1000 0000

XS-3 (Excess-3)Code

* Non-weighted code.

* Derived from BCD code (8-4-2-1 code)words by adding (0011)2 or (3)10 to each
code word.

Decimal Write each digit in 4-bit binary code BCD +(0011) XS-3
* Therefore Hence smallest number in XS-3is 0011 i.e., 0 and largestis 1100 i.e., 9
Decimal BCD XS-3 e XS-3is a reflective code since code
0 0000 0011 for 9 is complement of code for 0,
1 0001 0100 code for 8 is complement of code for
) 0010 0101 1, code for 7 is complement of code
3 0011 0110 for 2, code for 6 is complement of
code for 3, code for 5 is complement
4 0100 0111 of code for 4.
5 0101 1000 * |tis a sequential code since each
6 0110 1001 number is 1 binary bit greater than
7 0111 1010 its preceding number.E
8 1000 1011
9 1001 1100

Conversion of decimal numbers XS-3 code:
* Eg.: Convert (964),, to its equivalent XS-3 code.

Decimal Number - 9 6 4

XS-3 Equivalent - 1100 1001 0111
Therefore (964),,= (1100 1001 0111),. 5

Conversion of XS-3 code to equivalent decimal numbers :
* Eg.: Convert (0011 1010 1100),. 5 to its equivalent decimal humber.

XS-3code - 1010 0011 1100

Decimal equivalent - 0 7 9
Therefore (1010 0011 1100),. ; = (709)4,
Obtain XS-3 equivalent of following numbers:
(a) (235)4 (b) (146),, (c) (0111 1000)5, (d) (1001 0011),.p
(e) (101010), (hint: first convert to decimal)

Gray Code

Decimal Binary Gray Code + Non-weighted code.
0 0000 0000 * |t has a very special feature that only
1 0001 0001 one bit will change, each time the
2 0010 0011 decimal number is incremented,
3 0011 0010 therefore also called unit distance code.
4 0100 0110
5 0101 0111 Binary and Gray conversions:
6 0110 0101 * For Gray to binary or binary to Gray
5 0111 0100 conversions let’s understand rules for
- Ex-OR
8 1000 1100 _
(Ex-OR is represented by symbol &)
9 1001 1101
10 1010 1111 Rules for EX-OR:
11 1011 1110 0@0=0
12 1100 1010 0Od1=1
13 1101 1011 1d0=1
14 1110 1001 14 1=0
15 1111 1000

Conversion from Binary to Gray code:

Step 1: Write MSB of given Binary number as it is.

Step 2: Ex-OR this bit with next bit of that binary number and write the result.
Step 3: Ex-OR each successive sum until LSB of that binary number is reached.
e Eg.: Convert (1010011), to its equivalent Gray code.

I B i I

1 1 1 1 0 1 0
Therefore (1010011), = (1111010)g,,,
Conversion from Gray to Binary:
Step 1: Write MSB of given Binary number as it is.
Step 2: Ex-OR this bit with next bit of that binary number and write the result.
Step 3: Continue this process until LSB of that binary number is reached.

* Eg.: Convert (1010111),,, to its equivalent Binary number.
1 0 1 0 1 1

/l/i/i/l/i/?

Therefore (1010111);,,, = (1100101),

Alphanumeric Codes

A binary bit can represent only two symbols ‘0’ and ‘1. But it is not enough for
communication between two computers because there we need many more
symbols for communication.

These symbols are required to represent
26 alphabets with capital and small letters
Numbers from0to 9

Punctuation marks and other symbols

Alphanumeric codes represent numbers and alphabetic characters. They also
represent other characters such as punctuation symbols and instructions for
conveying information.

Therefore instead of using only single binary bits, a group of bits is used as a code
to represent a symbol.

The ASCII code

DEL

SP

$

%
&

DLE
DCA
DC2
DC3

ETB
CAN

EM
SUB

ESC

FC
G5

RS

Us

MNUL
S0OH

STX

ETX

EOT | DC4

ENG | NAK

ACK | SYN
BEL
BS
HT

LF

FF
CR

50

Sl

br

bs

bs

2
3
4
2
4]

10

11

12
13
14
15

Bits

W

Encode the following in ASCIl code: e

1. We the people

-_ T O M ¢2)

¢2)

1010111
1100101
0100000
1110100
1101000
1100101
0100000
1010000
1100101
1101111
1100001
1101100
1100101

ASCII- (American Standard Code for Information Interchange)

Universally accepted alphanumeric code.

Used in most computers and other electronic equipments. Most computer keyboards are
standardized with ASCII.

When a key is pressed, its corresponding ASCII code is generated which goes to the
computer.

Contains 128 characters and symbols.
Since 128 = 27 hence we need 7 bits to write 128 characters. Therefore ASCll is a 7 bit code.
Can be represented in 8 bits by considering MSB = 0 always.

Hence we have ASCII codes from 0000 0000 to 0111 1111 in binary or from 00 to 7F in
hexadecimal.

The first 32 characters are non-graphic control commands (never displayed or printed) eg.,
null, escape

The remaining characters are graphic symbols (can be displayed and printed). This includes
alphabets (capital and small), punctuation signs and commonly used symbols.

So ASCII code consists of 94 printable characters, 32 non printable control commands and
“Space” and “Delete” characters = 128 characters

Using ASCII table obtain ASCII code word for
(@) DEL (b)% (c)W (d)g (e) &

EBCDIC-(Extended Binary Coded Decimal Interchange Code)

» 8-bit code.
* Total 256 characters are possible, however all are not used.
* There is no parity bit used to check error in this code set.

Using code table obtain EBCDIC code word for
(a) NUL (b) & (c) m (d) SP (e) -

EBCDIC Code Table

|
1
S
1
#l
F
”
0
T
2
3
+-

—le=l=-10

e -
-l=-10]l- |0
{ +—
Iﬁ#O#O&C
-1l |2
S S

~|l0|~]|0O |«
e e e
-=10j|O0|~|®>
.IlTJ -

-10|]0|0|®
o|j™]|™ -”17
—t—t—t

0
1
1
0

0
1
0
i
5

0
0
I
1
3

0o
0

]
0o
2

0
0
0
1
|

ololelo|o
1 4 41417
R /=~

I O~ |N|™| =
*/ x
il
I

2 lg=—>|o|~|lo]l~|0o

2 |g=—|olo|~-|~]|o

- a—|o|o|o|o|~
o -

Error detecting and correcting codes

When a digital information is transmitted, it may not be received correctly by the
receiver.

The error is caused due to electrical disturbance of circuit it is also called noise.

This noise may force ‘1’ to change to ‘0O’ or vice versa.

This error has to be detected and corrected.

Parity:
* For detection of error an extra bit (parity bit) is attached to code.

* For example: If a 7 bit data (1010110) is to be transmitted then it can be
transmitted as 8 bit word (01010110) i.e., even parity code word or as
(11010110)i.e., odd parity code word.

* Where parity is decided by extra MSB (parity bit) which is introduced in original
data.

 If total number of ‘1’s in transmitted/ received word is even then parity is even.
* If total number of ‘1’s in transmitted/ received word is odd then parity is odd.

N,
N,
N3

N,
P

N,
N,
N3

N,
P

N,
N,
N3

N,

Extra

Encode the following in ASCIl code with even parity and
represent it in hexadecimal code:

1. People
Character ASCIl code with Hexadecimal

even parity code
P 0101 0000 50
e 0110 0101 65
o 0110 1111 6F
p 0111 0001 71
I 0110 1100 6C
e 0110 0101 65

Detection of error by parity code
* Suppose that a 7 bit data (1011010) is to be transmitted with even parity.

* Hence it is transmitted as (01011010) where MSB is parity bit which is kept 0 in order to
maintain even parity of transmitted word.

e |Ifitisreceived as (01011010)i.e., without error then parity still remains even. Hence, it is
declared as correct word.

* |Ifitisreceivedas(01111010)i.e., with 1 error then parity becomes odd. Hence, it is
declared as incorrect word.

* But the drawback of this code is if data is received with 2 errors, say as (0110010) then
parity still remains even and declared as correct word even in spite of being incorrect.

* Also it cannot detect where exactly the error has occurred.

P Message bits Parity Receivers
decision

Transmitted Code 0 1 0 1 1 O 1 0O | Even -

Received Code (withOerror) | O [1 0 1 1 O 1 O | Even Correct word

Received Code (withlerror) | O [1 1 1 1 O 1 0| Odd Correct word

Received Code (with2errors) | O | 1 1 1 0 O 1 O | Even Correct word

Hamming Code

It is a linear block code.
It is an error correcting code

The 7-bit Hamming code is commonly used, but this concept can be extended to any
number of bits.

N; | Ng | Ns | P, | N; | P, | Py
7 6 5 4 3 2 1

N = number/data bits P = Parity bits
Parity bits are introduced at each 2" bit wheren=0, 1, 2, 3...

1%t parity bitis at 2°=1i.e., 1%t place and denoted by P,
2" parity bit is at 21 = 2 i.e., 2" place and denoted by P,
37 parity bitis at 22 =2 i.e., 4 place and denoted by P,

4t parity bit will be at 23 =8 i.e., 8™ place. But since we have only 7 bit code it cannot have
this parity bit. So 7 bit Hamming code has only 3 parity bits P, P,, P,.

A bitword1 0 1 1istransmitted. Construct the even parity 7-bit Hamming Code for this data

* Step 1: fill the data bits in their respective places (N, N, N¢, N;) leaving parity bit places

empty as shown

* Step 2: Decide P;:

* Step 3: Decide P,:

Set P, =1 to have even
parity for Bits 1,3,5,7

Set P, = 0 to have even

N7 N6 N5 P4 N3 P2 P1
1 0 1 1
7 6 5 4 3 2 1
P, checks parity of bit 1, 3, 5, 7 that means it checks on P,, N5, N¢, N,
N, Ng N; P, N, P, 1
1 0 1 1 1
7 6 5 4 3 2 1
P, checks parity of bit 2, 3, 6, 7 that means it checks on P,, N3, N¢, N,
N7 N6 N5 P4 N3 PZ P1
1 0 1 1 0 1
7 6 5 4 3 2 1

* Step 4: Decide P,:

parity for Bits 1,3,6,7

P, checks parity of bit 4, 5, 6, 7 that means it checks on P,, N, N¢, N,

Hence the required 7 bit Hamming codeis 1 01010 1

N7 N6 N5 P4 N3 I:)2 I:)1
1| 0|10]| 1] 0|1
7 6 5 4 3 2 1

Set P, = 1 to have even
parity for Bits 1,3,5,7

