
CODES
BCD, XS-3, Gray Code, Alphanumeric Codes

(ASCII, EBCDIC), Error detecting and correcting
codes (Parity Code, Hamming Code)

Amraja Shivkar

Classification of codes

Codes

Weighted
Codes

Non-weighted
Code

Reflective
Codes

Sequential
Code

Alpha
numeric

Error
detecting and

correcting
Codes

1. Weighted Codes

• Obey positional weight principle.

• A specific weight is assigned to each position of the number.

• Eg.: Binary, BCD codes

2. Non-weighted Codes

• Do not obey positional weight principle.

• Positional weights are not assigned.

• Eg.: excess-3 code, Gray code

3. Reflective Codes

• A code is said to be reflective when code for 9 is complement of code for 0, code for
8 is complement of code for 1, code for 7 is complement of code for 2, code for 6 is
complement of code for 3, code for 5 is complement of code for 4.

• Reflectivity is desirable when 9’s complement has to be found.

• Eg.: excess-3 code

4. Sequential Codes
• A code is said to be sequential when each succeeding code is one binary number

greater than preceding code.
• Eg.: Binary, XS-3

5. Alphanumeric Codes
• Designed to represent numbers as well as alphabetic characters.
• Capable of representing symbols as well as instructions.
• Eg.: ASCII, EBCDIC

6. Error Detecting and Correcting Codes
• When digital data is transmitted from one system to another, an unwanted electrical

disturbance called ‘noise’ may get added to it.
• This can cause an ‘error’ in digital information. That means a 0 can change to 1 or 1

can change to 0.
• To detect and correct such errors special type of codes capable of detecting and

correcting the errors are used.
• Eg.: Parity code, Hamming code

BCD(Binary Coded Decimal) Code

• In this code each digit is represented by a 4-bit binary number.

• The positional weights assigned to the binary digits in BCD code are 8-4-2-1 with 1
corresponding to LSB and 8 corresponding to MSB.

• Other BCD codes like 7-4-2-1, 5-4-2-1 etc also exist.

Conversion from decimal to BCD

• The decimal digits 0 to 9 are converted into BCD, exactly in the same way as binary.

Invalid BCD codes:

• With 4 bits we can represent total sixteen numbers (0000 to 1111) but in BCD only
first ten codes are used (0000 to 1001)

• Therefore remaining six codes (1010 to 1111)are invalid in BCD

Positional
Weights

8 4 2 1

23

MSB
22 21 20

LSB

Digital 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Conversion of bigger decimal numbers to BCD:

• Express each decimal digit with its equivalent 4-bit BCD code

• Eg.: Convert (964)10 to its equivalent BCD code.

There fore (964)10 = (1001 0110 0100)BCD

• Hence smallest number in BCD is 0000 i.e., 0 and largest is 1001 i.e., 9 after
which 10 will be expressed by combinations i.e., 0001 0000 and is known as
packed BCD

Comparison with Binary:

• Less efficient than binary, since conversion of a decimal number into BCD
needs more bits than in binary

Eg., (22)10 = (10110)2 = (0010 0010)BCD So BCD uses more bits than binary for
the same decimal number.

• BCD arithmetic is more complicated than binary arithmetic.

• BCD – decimal conversion is simpler than Binary – decimal conversion.

Decimal Number → 9 6 4

Binary Equivalent → 1001 0110 0100

Advantages of BCD codes:
• Its similar to decimal number system.

• We need to remember binary equivalents of decimal numbers 0 to 9 only.

• Conversions from decimal to BCD or BCD to decimal is very simple and no
calculation is needed.

Disadvantages of BCD codes:
• Less efficient than binary, since conversion of a decimal number into BCD

needs more bits than in binary

• BCD arithmetic is more complicated than binary arithmetic.

Convert following decimal numbers to BCD:

(a) 164 (b) 4297 (c) 8065

Convert following BCD codes to decimal equivalent:

(a) 1001 1000 (b) 0001 0100 0110 (c) 0111 0011 0101

Convert following binary numbers to BCD codes: (Hint: convert to decimal first)

(a) 1100 (b) 10001 (c) 1010101

Convert following BCD codes to binary equivalent: (Hint: convert to decimal first)

(a) 0010 1000 (b) 1001 0111 (c) 1000 0000

XS-3 (Excess-3)Code
• Non-weighted code.

• Derived from BCD code (8-4-2-1 code)words by adding (0011)2 or (3)10 to each
code word.

Decimal BCD XS-3

• Therefore Hence smallest number in XS-3 is 0011 i.e., 0 and largest is 1100 i.e., 9

Write each digit in 4-bit binary code + (0011)

Decimal BCD XS-3

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

• XS-3 is a reflective code since code
for 9 is complement of code for 0,
code for 8 is complement of code for
1, code for 7 is complement of code
for 2, code for 6 is complement of
code for 3, code for 5 is complement
of code for 4.

• It is a sequential code since each
number is 1 binary bit greater than
its preceding number.E

Conversion of decimal numbers XS-3 code:

• Eg.: Convert (964)10 to its equivalent XS-3 code.

Therefore (964)10 = (1100 1001 0111)XS-3

Conversion of XS-3 code to equivalent decimal numbers :

• Eg.: Convert (0011 1010 1100)XS-3 to its equivalent decimal number.

Therefore (1010 0011 1100)XS-3 = (709)10

--

Obtain XS-3 equivalent of following numbers:

(a) (235)10 (b) (146)10 (c) (0111 1000)BCD (d) (1001 0011)BCD

(e) (101010)2 (hint: first convert to decimal)

Decimal Number → 9 6 4

XS-3 Equivalent → 1100 1001 0111

XS-3 code → 1010 0011 1100

Decimal equivalent → 0 7 9

Gray Code

• Non-weighted code.

• It has a very special feature that only
one bit will change, each time the
decimal number is incremented,
therefore also called unit distance code.

Binary and Gray conversions:

• For Gray to binary or binary to Gray
conversions let’s understand rules for
Ex-OR

(Ex-OR is represented by symbol)

Rules for EX-OR:

Decimal Binary Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Conversion from Binary to Gray code:

Step 1: Write MSB of given Binary number as it is.

Step 2: Ex-OR this bit with next bit of that binary number and write the result.

Step 3: Ex-OR each successive sum until LSB of that binary number is reached.

• Eg.: Convert (1010011)2 to its equivalent Gray code.

1 0 1 0 0 1 1

1 1 1 1 0 1 0

Therefore (1010011)2 = (1111010)Gray

Conversion from Gray to Binary:

Step 1: Write MSB of given Binary number as it is.

Step 2: Ex-OR this bit with next bit of that binary number and write the result.

Step 3: Continue this process until LSB of that binary number is reached.

• Eg.: Convert (1010111)Gray to its equivalent Binary number.

1 0 1 0 1 1 1

1 1 0 0 1 0 1

Therefore (1010111)Gray = (1100101)2

Alphanumeric Codes

• A binary bit can represent only two symbols ‘0’ and ‘1’. But it is not enough for
communication between two computers because there we need many more
symbols for communication.

• These symbols are required to represent

- 26 alphabets with capital and small letters

- Numbers from 0 to 9

- Punctuation marks and other symbols

• Alphanumeric codes represent numbers and alphabetic characters. They also
represent other characters such as punctuation symbols and instructions for
conveying information.

• Therefore instead of using only single binary bits, a group of bits is used as a code
to represent a symbol.

The ASCII code

Encode the following in ASCII code:

1. We the people

W 1010111

e 1100101

0100000

t 1110100

h 1101000

e 1100101

0100000

P 1010000

e 1100101

o 1101111

p 1100001

l 1101100

e 1100101

ASCII- (American Standard Code for Information Interchange)
• Universally accepted alphanumeric code.

• Used in most computers and other electronic equipments. Most computer keyboards are
standardized with ASCII.

• When a key is pressed, its corresponding ASCII code is generated which goes to the
computer.

• Contains 128 characters and symbols.

• Since 128 = 27 hence we need 7 bits to write 128 characters. Therefore ASCII is a 7 bit code.

• Can be represented in 8 bits by considering MSB = 0 always.

• Hence we have ASCII codes from 0000 0000 to 0111 1111 in binary or from 00 to 7F in
hexadecimal.

• The first 32 characters are non-graphic control commands (never displayed or printed) eg.,
null, escape

• The remaining characters are graphic symbols (can be displayed and printed). This includes
alphabets (capital and small), punctuation signs and commonly used symbols.

• So ASCII code consists of 94 printable characters, 32 non printable control commands and
“Space” and “Delete” characters = 128 characters

--

Using ASCII table obtain ASCII code word for

(a) DEL (b) % (c) W (d) g (e) &

EBCDIC-(Extended Binary Coded Decimal Interchange Code)

• 8-bit code.

• Total 256 characters are possible, however all are not used.

• There is no parity bit used to check error in this code set.

--

Using code table obtain EBCDIC code word for

(a) NUL (b) & (c) m (d) SP (e) -

Convert the following (26)10 to Gray code:

Step 1: Convert decimal to binary.

= (11010)2

Step 2: Convert this binary number to Gray code.

1 1 0 1 0

1 0 1 1 1

Therefore (26)10 = (10111)Gray

Convert following from Gray code to Binary:

(a) 1010101 (b) 1110011 (c) 11001100

Convert following to Gray code:

(a) (1010101)2 (b) (1101101)2 (c) (46)10 (d) (88)10

2 26

2 13 0

2 6 1

2 3 0

2 1 1

0 1

Error detecting and correcting codes
• When a digital information is transmitted, it may not be received correctly by the

receiver.

• The error is caused due to electrical disturbance of circuit it is also called noise.

• This noise may force ‘1’ to change to ‘0’ or vice versa.

• This error has to be detected and corrected.

Parity:

• For detection of error an extra bit (parity bit) is attached to code.

• For example: If a 7 bit data (1010110) is to be transmitted then it can be
transmitted as 8 bit word (01010110) i.e., even parity code word or as
(11010110)i.e., odd parity code word.

• Where parity is decided by extra MSB (parity bit) which is introduced in original
data.

• If total number of ‘1’s in transmitted/ received word is even then parity is even.

• If total number of ‘1’s in transmitted/ received word is odd then parity is odd.

BCD code BCD code
with even parity

BCD code
with odd parity

N4 N3 N2 N1 P N4 N3 N2 N1 P N4 N3 N2 N1

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 1 1 1 0 0 1 1

0 1 0 0 1 0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0 1 1 0 1 0 1

0 1 1 0 0 0 1 1 0 1 0 1 1 0

0 1 1 1 1 0 1 1 1 0 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 1 1 1 0 0 1

Extra

Encode the following in ASCII code with even parity and
represent it in hexadecimal code:

1. People
Character ASCII code with

even parity
Hexadecimal

code

P 0101 0000 50

e 0110 0101 65

o 0110 1111 6F

p 0111 0001 71

l 0110 1100 6C

e 0110 0101 65

Detection of error by parity code
• Suppose that a 7 bit data (1011010) is to be transmitted with even parity.

• Hence it is transmitted as (01011010) where MSB is parity bit which is kept 0 in order to
maintain even parity of transmitted word.

• If it is received as (01011010) i.e., without error then parity still remains even. Hence, it is
declared as correct word.

• If it is received as (01111010) i.e., with 1 error then parity becomes odd. Hence, it is
declared as incorrect word.

• But the drawback of this code is if data is received with 2 errors , say as (0110010) then
parity still remains even and declared as correct word even in spite of being incorrect.

• Also it cannot detect where exactly the error has occurred.

P Message bits Parity Receivers
decision

Transmitted Code 0 1 0 1 1 0 1 0 Even -

Received Code (with 0 error) 0 1 0 1 1 0 1 0 Even Correct word

Received Code (with 1 error) 0 1 1 1 1 0 1 0 Odd Correct word

Received Code (with 2 errors) 0 1 1 1 0 0 1 0 Even Correct word

Hamming Code

• It is a linear block code.

• It is an error correcting code

• The 7-bit Hamming code is commonly used, but this concept can be extended to any
number of bits.

N → number/data bits P → Parity bits

• Parity bits are introduced at each 2n bit where n = 0, 1, 2, 3…

• 1st parity bit is at 20 = 1 i.e., 1st place and denoted by P1

• 2nd parity bit is at 21 = 2 i.e., 2nd place and denoted by P2

• 3rd parity bit is at 22 = 2 i.e., 4th place and denoted by P4

• 4th parity bit will be at 23 = 8 i.e., 8th place. But since we have only 7 bit code it cannot have
this parity bit. So 7 bit Hamming code has only 3 parity bits P1, P2, P4.

N7 N6 N5 P4 N3 P2 P1

7 6 5 4 3 2 1

A bit word 1 0 1 1 is transmitted. Construct the even parity 7-bit Hamming Code for this data

• Step 1: fill the data bits in their respective places (N7, N6, N5, N3) leaving parity bit places
empty as shown

• Step 2: Decide P1:

P1 checks parity of bit 1, 3, 5, 7 that means it checks on P1, N3, N5, N7

• Step 3: Decide P2:

P2 checks parity of bit 2, 3, 6, 7 that means it checks on P2, N3, N6, N7

• Step 4: Decide P4:

P4 checks parity of bit 4, 5, 6, 7 that means it checks on P4, N5, N6, N7

Hence the required 7 bit Hamming code is 1 0 1 0 1 0 1

N7 N6 N5 P4 N3 P2 P1

1 0 1 1

7 6 5 4 3 2 1

N7 N6 N5 P4 N3 P2 P1

1 0 1 1 1

7 6 5 4 3 2 1

Set P1 = 1 to have even
parity for Bits 1,3,5,7

N7 N6 N5 P4 N3 P2 P1

1 0 1 1 0 1

7 6 5 4 3 2 1

Set P2 = 0 to have even
parity for Bits 1,3,6,7

Set P4 = 1 to have even
parity for Bits 1,3,5,7

N7 N6 N5 P4 N3 P2 P1

1 0 1 0 1 0 1

7 6 5 4 3 2 1

