CODES

BCD, XS-3, Gray Code, Alphanumeric Codes (ASCII, EBCDIC), Error detecting and correcting codes (Parity Code, Hamming Code)

Amraja Shivkar

Classification of codes

- 1. Weighted Codes
- Obey positional weight principle.
- A specific weight is assigned to each position of the number.
- Eg.: Binary, BCD codes
- 2. Non-weighted Codes
- Do not obey positional weight principle.
- Positional weights are not assigned.
- Eg.: excess-3 code, Gray code
- 3. Reflective Codes
- A code is said to be reflective when code for 9 is complement of code for 0, code for 8 is complement of code for 1, code for 7 is complement of code for 2, code for 6 is complement of code for 3, code for 5 is complement of code for 4.
- Reflectivity is desirable when 9's complement has to be found.
- Eg.: excess-3 code

- 4. Sequential Codes
- A code is said to be sequential when each succeeding code is one binary number greater than preceding code.
- Eg.: Binary, XS-3
- 5. Alphanumeric Codes
- Designed to represent numbers as well as alphabetic characters.
- Capable of representing symbols as well as instructions.
- Eg.: ASCII, EBCDIC
- 6. Error Detecting and Correcting Codes
- When digital data is transmitted from one system to another, an unwanted electrical disturbance called 'noise' may get added to it.
- This can cause an 'error' in digital information. That means a 0 can change to 1 or 1 can change to 0.
- To detect and correct such errors special type of codes capable of detecting and correcting the errors are used.
- Eg.: Parity code, Hamming code

BCD(Binary Coded Decimal) Code

- In this code each digit is represented by a 4-bit binary number.
- The positional weights assigned to the binary digits in BCD code are 8-4-2-1 with 1 corresponding to LSB and 8 corresponding to MSB.

Positional	8	4	2	1		
Weights	2 ³	2 ²	2 ¹	2 ⁰		
	MSB			LSB		

• Other BCD codes like 7-4-2-1, 5-4-2-1 etc also exist.

Conversion from decimal to BCD

• The decimal digits 0 to 9 are converted into BCD, exactly in the same way as binary.

Digital	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Invalid BCD codes:

- With 4 bits we can represent total sixteen numbers (0000 to 1111) but in BCD only first ten codes are used (0000 to 1001)
- Therefore remaining six codes (1010 to 1111) are invalid in BCD

Conversion of bigger decimal numbers to BCD:

- Express each decimal digit with its equivalent 4-bit BCD code
- Eg.: Convert (964)₁₀ to its equivalent BCD code.

Decimal Number $ ightarrow$	9	6	4

Binary Equivalent \rightarrow 1001 0110 0100

There fore $(964)_{10} = (1001\ 0110\ 0100)_{BCD}$

 Hence smallest number in BCD is 0000 i.e., 0 and largest is 1001 i.e., 9 after which 10 will be expressed by combinations i.e., 0001 0000 and is known as packed BCD

Comparison with Binary:

- Less efficient than binary, since conversion of a decimal number into BCD needs more bits than in binary
- Eg., $(22)_{10} = (10110)_2 = (0010\ 0010)_{BCD}$ So BCD uses more bits than binary for the same decimal number.
- BCD arithmetic is more complicated than binary arithmetic.
- BCD decimal conversion is simpler than Binary decimal conversion.

Advantages of BCD codes:

- Its similar to decimal number system.
- We need to remember binary equivalents of decimal numbers 0 to 9 only.
- Conversions from decimal to BCD or BCD to decimal is very simple and no calculation is needed.

Disadvantages of BCD codes:

• Less efficient than binary, since conversion of a decimal number into BCD needs more bits than in binary

• BCD arithmetic is more complicated than binary arithmetic.

Convert following decimal numbers to BCD:

(a) 164 (b) 4297 (c) 8065

Convert following BCD codes to decimal equivalent:

(a) 1001 1000 (b) 0001 0100 0110 (c) 0111 0011 0101

Convert following binary numbers to BCD codes: (Hint: convert to decimal first) (a) 1100 (b) 10001 (c) 1010101

Convert following BCD codes to binary equivalent: (Hint: convert to decimal first) (a) 0010 1000 (b) 1001 0111 (c) 1000 0000

XS-3 (Excess-3)Code

- Non-weighted code.
- Derived from BCD code (8-4-2-1 code)words by adding (0011)2 or (3)10 to each code word.

Decimal
$$\xrightarrow{\text{Write each digit in 4-bit binary code}} BCD \xrightarrow{+(0011)} XS-3$$

• Therefore Hence smallest number in XS-3 is 0011 i.e., 0 and largest is 1100 i.e., 9

Decimal	BCD	XS-3		
0	0000	0011		
1	0001	0100		
2	0010	0101		
3	0011	0110		
4	0100	0111		
5	0101	1000		
6	0110	1001		
7	0111	1010		
8	1000	1011		
9	1001	1100		

- XS-3 is a reflective code since code for 9 is complement of code for 0, code for 8 is complement of code for 1, code for 7 is complement of code for 2, code for 6 is complement of code for 3, code for 5 is complement of code for 4.
- It is a sequential code since each number is 1 binary bit greater than its preceding number.E

Conversion of decimal numbers XS-3 code:

• Eg.: Convert (964)₁₀ to its equivalent XS-3 code.

Conversion of XS-3 code to equivalent decimal numbers :

• Eg.: Convert (0011 1010 1100)_{XS-3} to its equivalent decimal number.

XS-3 code \rightarrow	1010	0011	1100
Decimal equivalent \rightarrow	0	7	9
Therefore (1010 0011 1100) _{XS-3} =	(709) ₁₀		

Obtain XS-3 equivalent of following numbers:

(a) $(235)_{10}$ (b) $(146)_{10}$ (c) $(0111\ 1000)_{BCD}$ (d) $(1001\ 0011)_{BCD}$ (e) $(101010)_2$ (hint: first convert to decimal)

Gray Code

Decimal	Binary	Gray Code			
0	0000	000 <u>0</u>			
1	0001	00 <u>0</u> 1			
2	0010	001 <u>1</u>			
3	0011	0 <u>0</u> 10			
4	0100	011 <u>0</u>			
5	0101	01 <u>1</u> 1			
6	0110	010 <u>1</u>			
7	0111	<u>0</u> 100			
8	1000	110 <u>0</u>			
9	1001	11 <u>0</u> 1			
10	1010	111 <u>1</u>			
11	1011	1 <u>1</u> 10			
12	1100	101 <u>0</u>			
13	1101	10 <u>1</u> 1			
14	1110	100 <u>1</u>			
15	1111	1000			

- Non-weighted code.
- It has a very special feature that only one bit will change, each time the decimal number is incremented, therefore also called unit distance code.

Binary and Gray conversions:

 For Gray to binary or binary to Gray conversions let's understand rules for Ex-OR

(Ex-OR is represented by symbol $oldsymbol{\Phi}$)

Rules for EX-OR:

- 0 🕀 0 = 0
- 0 🕀 1 = 1
- 1 🕀 0 = 1
- 1 🕀 1 = 0

Conversion from Binary to Gray code:

Step 1: Write MSB of given Binary number as it is.

Step 2: Ex-OR this bit with next bit of that binary number and write the result. Step 3: Ex-OR each successive sum until LSB of that binary number is reached.

• Eg.: Convert (1010011)₂ to its equivalent Gray code.

Therefore $(1010011)_2 = (1111010)_{Gray}$

Conversion from Gray to Binary:

Step 1: Write MSB of given Binary number as it is.

Step 2: Ex-OR this bit with next bit of that binary number and write the result.

Step 3: Continue this process until LSB of that binary number is reached.

• Eg.: Convert (1010111)_{Grav} to its equivalent Binary number.

Therefore $(1010111)_{Gray} = (1100101)_2$

Alphanumeric Codes

- A binary bit can represent only two symbols '0' and '1'. But it is not enough for communication between two computers because there we need many more symbols for communication.
- These symbols are required to represent
- 26 alphabets with capital and small letters
- Numbers from 0 to 9
- Punctuation marks and other symbols
- Alphanumeric codes represent numbers and alphabetic characters. They also represent other characters such as punctuation symbols and instructions for conveying information.
- Therefore instead of using only single binary bits, a group of bits is used as a code to represent a symbol.

The ASCII code

b7						0	0	0	0	1	1	1	1
b ₆ —					→	0	0	1 0	1	0	0	1 0	1
Bits	b₄ ↓	b₃ ↓	b₂ ↓	b₁ ↓	Column → Row↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	P		р
	0	0	0	1	1	SOH	DC1	ļ	1	Α	Q	a	q
	0	0	1	0	2	STX	DC2		2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	U	e	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	•	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
	1	0	0	1	9	HT	EM)	9	I	Y	į	у
	1	0	1	0	10	LF	SUB	*		J	Z	j	Z
	1	0	1	1	11	VT	ESC	+		K	[k	{
	1	1	0	0	12	FF	FC	3	۷	L	١	-	_
	1	1	0	1	13	CR	GS	-	=	М]	m	}
	1	1	1	0	14	SO	RS	-	>	N	Λ	n	~
	1	1	1	1	15	SI	US	1	?	0	_	0	DEL

W 1010111

Encode the following in ASCII code: e 1100101

1. We the people

- 0100000
- t 1110100
- h 1101000
- e 1100101
 - 0100000
- P 1010000
- e 1100101
- o 1101111
- p 1100001
 - 1101100
- e 1100101

ASCII- (American Standard Code for Information Interchange)

- Universally accepted alphanumeric code.
- Used in most computers and other electronic equipments. Most computer keyboards are standardized with ASCII.
- When a key is pressed, its corresponding ASCII code is generated which goes to the computer.
- Contains 128 characters and symbols.
- Since $128 = 2^7$ hence we need 7 bits to write 128 characters. Therefore ASCII is a 7 bit code.
- Can be represented in 8 bits by considering MSB = 0 always.
- Hence we have ASCII codes from 0000 0000 to 0111 1111 in binary or from 00 to 7F in hexadecimal.
- The first 32 characters are non-graphic control commands (never displayed or printed) eg., null, escape
- The remaining characters are graphic symbols (can be displayed and printed). This includes alphabets (capital and small), punctuation signs and commonly used symbols.
- So ASCII code consists of 94 printable characters, 32 non printable control commands and "Space" and "Delete" characters = 128 characters

Using ASCII table obtain ASCII code word for

(a) DEL (b) % (c) W (d) g (e) &

EBCDIC-(Extended Binary Coded Decimal Interchange Code)

- 8-bit code.
- Total 256 characters are possible, however all are not used.
- There is no parity bit used to check error in this code set.

Using code table obtain EBCDIC code word for

(a) NUL (b) & (c) m (d) SP (e) -

E	BC	DI	C	Code 7	Fab	le														area)
B 8					0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	B7-		-		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
		B6-			0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
			B 5		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
₿4	₿3 ↓	82	₿1	HEX-0	0	- 1	2	3	4	5	6	7	8	9	A	B	С	D	E	F
0	0	0	0	0	NUL	DLE	DS		SP	*	-								all i	0
0	0	0	1	1	SOH	SBA	sos				1		a	i		*	A	1		1
0	0	1	0	2	STX	EUA	FS	SYN	151				b	k	s		B	K	S	2
0	0	1	1	3	ETX	IC							c	1	1		С	L	т	3
0	1	0	0	4	PF	RES	BYP	PN					d	m	U		D	M	U	4
0	1	0	1	5	PT	NL	LF	RS			1		•	n	v		E	N	V	5
0	1	1	0	6	LC		ETB	UC	101				f	0	w		F	0	W	6
0	1	1	1	7	DEL	IL	ESC	EOT			-		g	р	×		G	P	x	7
1	0	0	0	8	The second	CAN							h	P	Y		н	Q	Y	8
1	Ó	0	1	9		EM			194				i	r	z		1	R	Z	9
1	0	1	0	A	SMM	cc	SM		¢	1	1	:								100
1	0	1	1	B	VT				•	\$	~	#			1					
1	1	0	0	С	FF	DUP		RA	<	×	%	•		See.					* 1. de	
1	1	0	1	D	CR	SF	ENG	NAK	()	-	1				1				
1	1	1	0	E	so	FM	ACK		+	;	>	=			18				2.50	
1	1	1	1	F	SI	ITB	BEL	SUB	1	-	?	-	1	a state	Sig.	116				Anto

Error detecting and correcting codes

- When a digital information is transmitted, it may not be received correctly by the receiver.
- The error is caused due to electrical disturbance of circuit it is also called noise.

- This noise may force '1' to change to '0' or vice versa.
- This error has to be detected and corrected.

Parity:

- For detection of error an extra bit (parity bit) is attached to code.
- For example: If a 7 bit data (1010110) is to be transmitted then it can be transmitted as 8 bit word (01010110) i.e., even parity code word or as (11010110) i.e., odd parity code word.
- Where parity is decided by extra MSB (parity bit) which is introduced in original data.
- If total number of '1's in transmitted/ received word is even then parity is even.
- If total number of '1's in transmitted/ received word is odd then parity is odd.

	BCD	code		W	BC vith e	D co even	de pari	ty	BCD code with odd parity						
N ₄	N ₃	N ₂	N ₁	Р	N ₄	N ₃	N ₂	N ₁	Р	N ₄	N ₃	N ₂	N_1		
0	0	0	0	0	0	0	0	0	1	0	0	0	0		
0	0	0	1	1	0	0	0	1	0	0	0	0	1		
0	0	1	0	1	0	0	1	0	0	0	0	1	0		
0	0	1	1	0	0	0	1	1	1	0	0	1	1		
0	1	0	0	1	0	1	0	0	0	0	1	0	0		
0	1	0	1	0	0	1	0	1	1	0	1	0	1		
0	1	1	0	0	0	1	1	0	1	0	1	1	0		
0	1	1	1	1	0	1	1	1	0	0	1	1	1		
1	0	0	0	1	1	0	0	0	0	1	0	0	0		
1	0	0	1	0	1	0	0	1	1	1	0	0	1		

Extra

Encode the following in ASCII code with even parity and represent it in hexadecimal code:

1. People

Character	ASCII code with	Hexadecima				
	even parity	code				
Ρ	0101 0000	50				
е	0110 0101	65				
Ο	0 110 1111	6F				
р	0111 0001	71				
I	0110 1100	6C				
е	0 110 0101	65				

Detection of error by parity code

- Suppose that a 7 bit data (1011010) is to be transmitted with even parity.
- Hence it is transmitted as (01011010) where MSB is parity bit which is kept 0 in order to maintain even parity of transmitted word.
- If it is received as (01011010) i.e., without error then parity still remains even. Hence, it is declared as correct word.
- If it is received as (01111010) i.e., with 1 error then parity becomes odd. Hence, it is declared as incorrect word.
- But the drawback of this code is if data is received with 2 errors , say as (0110010) then parity still remains even and declared as correct word even in spite of being incorrect.
- Also it cannot detect where exactly the error has occurred.

Hamming Code

- It is a linear block code.
- It is an error correcting code
- The 7-bit Hamming code is commonly used, but this concept can be extended to any number of bits.

 $N \rightarrow$ number/data bits $P \rightarrow$ Parity bits

- Parity bits are introduced at each 2ⁿ bit where n = 0, 1, 2, 3...
- 1st parity bit is at 2⁰ = 1 i.e., 1st place and denoted by P₁
- 2nd parity bit is at 2¹ = 2 i.e., 2nd place and denoted by P₂
- 3^{rd} parity bit is at $2^2 = 2$ i.e., 4^{th} place and denoted by P_4
- 4th parity bit will be at 2³ = 8 i.e., 8th place. But since we have only 7 bit code it cannot have this parity bit. So 7 bit Hamming code has only 3 parity bits P₁, P₂, P₄.

A bit word 1 0 1 1 is transmitted. Construct the even parity 7-bit Hamming Code for this data

Hence the required 7 bit Hamming code is 1 0 1 0 1 0 1