
Introduction to C++ Programming I

Ian Aitchison and Peter King

August 1997

Contents

1 The Computer 11
1.1 Central Processing Unit . 13
1.2 Memory . 13

1.2.1 Main memory . 14
1.2.2 External Memory . 14

1.3 Input/Output Devices . 15
1.4 The system bus . 16
1.5 More about memory and information representation 16

1.5.1 Representation of information in external memory . . 17
1.6 The execution cycle . 17
1.7 Summary . 18
1.8 Multiple Choice Questions . 19
1.9 Review Questions . 19

2 Programming Languages 20
2.1 Assembly Language . 21
2.2 High level Languages . 22
2.3 Summary . 23
2.4 Multiple Choice Questions . 23

3 Operating Systems 25
3.1 Summary . 27
3.2 Multiple Choice Questions . 27

4 Preparing a Computer Program 29
4.1 Summary . 30
4.2 Multiple Choice Questions . 31
4.3 Review Questions . 31

5 Algorithms 32
5.1 Describing an Algorithm . 33
5.2 Statements required to describe algorithms 35
5.3 Verifying the correctness of the algorithm 37

5.3.1 Desk-checking . 38

1

5.4 Series Minimum and Maximum Algorithm 38
5.5 Summary . 41
5.6 Multiple Choice Questions . 42
5.7 Review Questions . 42
5.8 Exercises . 43

6 A simple C++ program 45
6.1 Variables . 47

6.1.1 Reserved words . 48
6.2 Declaration of variables . 49
6.3 Constants and the declaration of constants 51
6.4 General form of a C++ Program 52
6.5 Input and Output . 52
6.6 Programming Style . 55
6.7 Summary . 55
6.8 Multiple Choice Questions . 56
6.9 Review questions . 57
6.10 Exercises . 58

7 The Assignment statement 59
7.1 Priority of Operators . 61
7.2 Examples of Arithmetic Expressions 62
7.3 Type Conversions . 62
7.4 Example Program: Temperature Conversion 62
7.5 Example Program: Pence to Pounds and Pence 63
7.6 Summary . 64
7.7 Multiple Choice Questions . 64
7.8 Review questions . 65
7.9 Exercises . 66

8 Further Assignment Statements & Control of Output 67
8.1 Increment and Decrement Operators 67
8.2 Specialised Assignment Statements 68
8.3 Formatting of output . 69
8.4 Example Program: Tabulation of sin function 71
8.5 Summary . 72
8.6 Multiple Choice Questions . 73
8.7 Exercises . 74

9 Introduction to structured design 75
9.1 Conditional Control Structures 75
9.2 Summary . 77
9.3 Review Questions . 77
9.4 Exercises . 77

2

10 Conditions 79
10.1 Relational Expressions . 79
10.2 Examples using Relational Operators 79
10.3 Logical Expressions . 80
10.4 Examples using logical operators 81
10.5 Summary . 82
10.6 Multiple Choice Questions . 82
10.7 Review Questions . 83

11 The if statement 85
11.1 Examples of if statements 85
11.2 Summary . 86
11.3 Multiple Choice Questions . 87
11.4 Exercises . 88

12 The if-else Statement 89
12.1 Examples of if-else statements 90
12.2 Example Program: Wages Calculation 90
12.3 Example Program: Pythagorean Triples 91
12.4 Example Program: Area and Perimeter of Rectangle 93
12.5 Summary . 94
12.6 Multiple Choice Questions . 94
12.7 Review Questions . 95
12.8 Exercises . 95

13 Nested if and if-else statements 97
13.1 Summary . 99
13.2 Multiple Choice Questions . 99
13.3 Review Questions . 99
13.4 Exercises . 100

14 The switch statement 101
14.1 Examples of switch statements 102
14.2 Summary . 104
14.3 Multiple Choice Questions . 104
14.4 Review Questions . 104
14.5 Exercises . 105

15 Further Structured Design 106
15.1 Repetition Control Structures 106
15.2 Example One: Using a while loop 106
15.3 Example Two: Using a while loop 109
15.4 Other forms of Repetition Control Structures 110
15.5 Summary . 112

3

15.6 Review questions . 112
15.7 Exercises . 113

16 The while statement 114
16.1 Example while loop: Printing integers 115
16.2 Example while loop: Summing Arithmetic Progression . . . 115
16.3 Example while loop: Table of sine function 116
16.4 Example while loop: Average, Minimum and Maximum Cal-

culation . 117
16.5 Example Program: Student mark processing 119
16.6 Example Program: Iterative evaluation of a square root . . . 122
16.7 Summary . 125
16.8 Multiple Choice Questions . 125
16.9 Review Questions . 126
16.10Exercises . 127

17 The do-while statement 129
17.1 Example Program: Sum of Arithmetic Progression 130
17.2 Example Program: Valid Input Checking 130
17.3 Example Program: Student Mark Processing (2) 131
17.4 Summary . 132
17.5 Multiple Choice Questions . 132
17.6 Review Questions . 133
17.7 Exercises . 134

18 The for statement 135
18.1 Example for statement: Print 10 integers 136
18.2 Example for statement: Print table of sine function 136
18.3 Example Program: Student Mark Processing (3) 137
18.4 Example Program: Generation of Pythagorean Triples 138
18.5 Summary . 140
18.6 Multiple Choice Questions . 140
18.7 Review Questions . 141
18.8 Exercises . 142

19 Streams and External Files 144
19.1 Streams . 144
19.2 Connecting Streams to External Files 145
19.3 Testing for end-of-file . 146
19.4 Summary . 148
19.5 Review Questions . 149
19.6 Exercises . 149

4

20 Top-down design using Functions 150
20.1 The need for functions . 151
20.2 The mathematical function library in C++ 152
20.3 Summary . 153
20.4 Review Questions . 154
20.5 Exercises . 154

21 Introduction to User-defined functions in C++ 155
21.1 Functions with no parameters 156
21.2 Functions with parameters and no return value 158
21.3 Functions that return values 160
21.4 Example function: sum of squares of integers 162
21.5 Example Function: Raising to the power 162
21.6 Call-by-value parameters . 163
21.7 Summary . 164
21.8 Review Questions . 164
21.9 Exercises . 166

22 Further User-defined functions in C++ 167
22.1 Call-by-reference parameters 167
22.2 Example Program: Invoice Processing 169
22.3 Summary . 173
22.4 Review Questions . 174
22.5 Exercises . 174

23 Arrays 176
23.1 Arrays in C++ . 177

23.1.1 Declaration of Arrays 177
23.1.2 Accessing Array Elements 178
23.1.3 Initialisation of arrays 180

23.2 Example Program: Printing Outliers in Data 180
23.3 Example Program: Test of Random Numbers 182
23.4 Arrays as parameters of functions 184
23.5 Strings in C++ . 186

23.5.1 String Output . 187
23.5.2 String Input . 187

23.6 Summary . 189
23.7 Review Questions . 190
23.8 Exercises . 191

5

About the course

Welcome to Heriot-Watt University Introduction to Computing I course.
This course is being provided for students taking the Certificate in Science
of Aberdeen and Heriot-Watt Universities. It is being delivered by way of
the World Wide Web, however all students will also receive the entire course
in a printed format.

The course is arranged in a series of Lessons. As well as new material
to learn, each Lesson contains review questions, multiple choice questions,
and programming exercises. The review questions are designed to get you
to think about the contents of the Lesson. These review questions should be
straightforward; if the answer is not obvious, reread the Lesson. The multi-
ple choice questions can be answered on-line when you are using the World
Wide Web; feedback is given if you choose the wrong answers. The program-
ming exercises are an essential part of the course. Computer programming
is a practical subject, without practice no progress will be made.

There will be some assessed coursework, this may be submitted by elec-
tronic mail. Electronic mail will also be used to provide help with problems.

Course contents

This course is intended as a first introduction to programming computers
using the C++ programming language. It is not assumed that the student
has done any programming before hence this course is not comprehensive
and does not cover all of C++. In particular it does not cover any of the
object-oriented features of C++, these are introduced in the following course
(Introduction to Computing II). Because this is a first programming course
emphasis is placed on the design of programs in a language-independent
fashion. A brief introduction to computers is also given.

The lessons of the course may be split into groups as follows:

1. About the computer and computer systems.

• Lesson 1 - The Computer. Covers the Central processor, mem-
ory, information representation and the operation cycle of the
computer.

6

• Lesson 2 - Programming Languages. Covers the various levels of
Programming Languages.

• Lesson 3 - Operating Systems. Covers the purpose of Operating
systems and the major types.

• Lesson 4 - Preparing a Computer Program. Covers the steps that
are carried out in going from a problem specification to having a
well-tested and reliable program to solve the problem.

2. About the design of programs.

• Lesson 5 - Algorithms. The basic constructs used in designing
programs. Sequence, selection and repetition.

• Lesson 9 - Introduction to Structured Design. Top-down design
of algorithms using sequence and selection only.

• Lesson 15 - Further Structured Design. Top-down design of algo-
rithms using repetition.

• Lesson 20 - Top-down design using Functions. An introduction
to problem-solving by splitting the problem into sub-problems
whose solutions are implemented as functions.

3. About C++

• Lesson 6 - A simple C++ program. Looks at a simple C++ pro-
gram and identifies features. Covers simple ideas about variables
and their declaration and input and output.

• Lesson 7 - The Assignment statement. How values are assigned
to variables.

• Lesson 8 - Further Assignment Statements & Control of Output.
More forms of assignment statement and simple formatting of
output.

• Lesson 10 - Conditions. How expressions that can be true or false
are written in C++.

• Lesson 11 - The if statement. How conditional execution of a
statement is carried out.

• Lesson 12 - The if-else statement. How a choice can be made
between which of two statements to execute.

• Lesson 13 - Nested if and if-else statements. How multi-choice
decisions can be made.

• Lesson 14 - The switch statement. An alternative way to imple-
ment multi-choice conditions.

• Lesson 16 - The while statement. The basic way to carry out
repetition.

7

• Lesson 17 - The do-while statement. An alternative way to carry
out repetition.

• Lesson 18 - The for statement. Repetition a set number of times
or as a control loop variable takes a set of values.

• Lesson 19 - Streams and External Files. How to input and output
data from and to external files.

• Lesson 21 - An introduction to User-defined functions in C++.
How to design your own functions.

• Lesson 22 - Further User-defined functions. Returning informa-
tion by parameters.

• Lesson 23 - Arrays. How to work with large collections of indexed
data.

Note that there is also a document ‘The Computer Exercises’ which gives
some help in using Windows and the Borland C++ compilers.

Suggested study timetable

It is suggested that you should cover the contents of the course in about
13/14 weeks. The lessons are not equal in size or in the difficulty of their
content. The following timetable is suggested.

Week 1 Try to cover most of the material in Lessons 1 to 4 during this
first week. This is mainly background material for those who have not
had much contact with computers before but some (or all) of it will
probably be familiar to most people taking the course. During this
first week try to familiarise yourself with the computer system you are
going to use so that you are ready to start programming as soon as
possible. Included with the course notes (The Computer Exercises) is
a document about using the Borland C++ compilers, check over this
and go through the suggested steps in compiling a small supplied C++
program. This activity may well expand into week 2.

Week 2 Read Lesson 5 on Algorithms. Don’t worry if you find it difficult
to make up your own algorithms at this stage, but do make an at-
tempt. You’ll continue to get practice at this as long as you program!
Also start looking at Lesson 6 on simple programs and their features.
Implement your solutions to the exercises on the computer.

Week 3 Cover Lessons 7 and 8 on assignment and implement the exercises
on simple calculation type programs.

Week 4 Now study Lesson 9 on Algorithms with simple selection. Read
Lesson 10 on how conditional expressions are constructed in C++.

8

Week 5 Study Lessons 11 and 12 on if and if-else statements and im-
plement the exercise on programs with simple selection.

Week 6 Continue the study of selection mechanisms with Lessons 13 and
14 on nested if and if-else statements and the switch statement.
The switch statement is not as fundamental as the others so spend
less time on it than the other selection mechanisms.

Week 7 Study Lesson 15 on repetition constructs and practice designing
algorithms using repetition. Commence Lesson 16 on the while state-
ment.

Week 8 Continue Lesson 16 on the while statement. Also cover Lesson 17
on the do-while statement this week. Do not spend so much time on
it as on the more fundamental while statement.

Week 9 Cover Lesson 18 on the for statement. This statement is used
frequently and so is an important statement. Have a look at Lesson
19 on Streams and Files so that you can use an External file in the
last assignment.

Week 10 Study Lesson 20 on structured design using functions. This is a
very important Lesson. If you have time start on Lesson 21 on how to
construct C++ functions.

Week 11 Carry on with Lesson 21 on user-defined functions. Continue on
to Lesson 22. In carrying out the exercises in these Lessons you will
also get further practice on using the conditional and repetition control
structures.

Week 12 Study Lesson 23 which introduces the concept of arrays. Again
this is an important concept in programming. The exercises for this
chapter will provide you with more practice in the use of control struc-
tures and functions.

Week 13 Finish off the course and start revision.

Assessment

There will be two class assignments to carry out. One will be given out which
requires that you know the material up to and including Lesson 12. The
other will require that you know the material up to and including Lesson 20
(19 is not needed for the assignment). The first assignment will be worth 10%
in the final assessment and the second assignment will be worth 15% in the
final assessment. The remaining 75% will come from the class examination.

Further information will be available on the World Wide Web version of
the course.

9

Accessing the course on the World Wide Web

The course, and its successor Introduction to Computing II, are available on
the World Wide Web (WWW). You are assumed to know how to connect
to WWW. The course has been developed using Netscape as the browser,
but it should be possible to access it equally well with Microsoft’s Internet
Navigator, or with Mosaic. To access the course, use your browser to open
the URL

http://www.cee.hw.ac.uk/

This will present you with a page about the Department of Computing and
Electrical Engineering at Heriot-Watt University. Follow the link labelled

Distance Learning Courses

The page loaded will give general information about the courses. There will
also be reminders about approaching deadlines for coursework, and notifi-
cation of any corrections to parts of the course. (Any corrections will have
been made in the WWW version of the course, but this will enable you to
annotate your printed version of the notes.) You are advised to always enter
the course in this fashion. Saving bookmarks with your browser may cause
problems if any corrections cause extra sections or questions to be added to
the course.

Coursework should be submitted using electronic mail. Send any files re-
quested to pjbk@cee.hw.ac.uk, with clear indications of which assignment
is being submitted within the file.

Getting Help

Although the notes are intended to be comprehensive, there will undoubtedly
be times when you need help. There are two mechanisms for this. An
electronic mailing list has been set up at Heriot-Watt University which copies
messages submitted to it to all members of the course. The course organisers
and teachers receive all messages sent to this list. All students should join
this mailing list, and use it to replace the discussion that would normally
take place in a classroom. In order to join the mailing list, send an electronic
mail message to majordomo@cee.hw.ac.uk with the following contents:

subscribe pathways

Once you have joined the list, messages to the list are sent as ordinary
electronic mail addressed to pathways@cee.hw.ac.uk

If your problems are of a more individual nature, you may prefer to send
them to the course teacher only, in which case an email message should be
addressed to pjbk@cee.hw.ac.uk

10

Lesson 1

The Computer

Before considering the programming of a computer a brief overview of the
basic structure of a Computer in terms of its main components is given.
Every Computer has the following general structure:

11

12

1.1 Central Processing Unit

The Central Processing Unit (CPU) performs the actual processing of data.
The data it processes is obtained, via the system bus, from the main mem-
ory. Results from the CPU are then sent back to main memory via the
system bus. In addition to computation the CPU controls and co-ordinates
the operation of the other major components. The CPU has two main com-
ponents, namely:

1. The Control Unit — controls the fetching of instructions from the
main memory and the subsequent execution of these instructions.
Among other tasks carried out are the control of input and output
devices and the passing of data to the Arithmetic/Logical Unit for
computation.

2. The Arithmetic/Logical Unit (ALU) — carries out arithmetic
operations on integer (whole number) and real (with a decimal point)
operands. It can also perform simple logical tests for equality and
greater than and less than between operands.

It is worth noting here that the only operations that the CPU can carry
out are simple arithmetic operations, comparisons between the result of a
calculation and other values, and the selection of the next instruction for
processing. All the rest of the apparently limitless things a computer can
do are built on this very primitive base by programming!

Modern CPUs are very fast. At the time of writing, the CPU of a typical
PC is capable of executing many tens of millions of instructions per second.

1.2 Memory

The memory of a computer can hold program instructions, data values, and
the intermediate results of calculations. All the information in memory is
encoded in fixed size cells called bytes. A byte can hold a small amount
of information, such as a single character or a numeric value between 0 and
255. The CPU will perform its operations on groups of one, two, four, or
eight bytes, depending on the interpretation being placed on the data, and
the operations required.

There are two main categories of memory, characterised by the time it
takes to access the information stored there, the number of bytes which are
accessed by a single operation, and the total number of bytes which can
be stored. Main Memory is the working memory of the CPU, with fast
access and limited numbers of bytes being transferred. External memory

13

is for the long term storage of information. Data from external memory
will be transferred to the main memory before the CPU can operate on it.
Access to the external memory is much slower, and usually involves groups
of several hundred bytes.

1.2.1 Main memory

The main memory of the computer is also known as RAM, standing for
Random Access Memory. It is constructed from integrated circuits and
needs to have electrical power in order to maintain its information. When
power is lost, the information is lost too! It can be directly accessed by the
CPU. The access time to read or write any particular byte are independent
of whereabouts in the memory that byte is, and currently is approximately
50 nanoseconds (a thousand millionth of a second). This is broadly com-
parable with the speed at which the CPU will need to access data. Main
memory is expensive compared to external memory so it has limited ca-
pacity. The capacity available for a given price is increasing all the time.
For example many home Personal Computers now have a capacity of 16
megabytes (million bytes), while 64 megabytes is commonplace on com-
mercial workstations. The CPU will normally transfer data to and from the
main memory in groups of two, four or eight bytes, even if the operation it
is undertaking only requires a single byte.

1.2.2 External Memory

External memory which is sometimes called backing store or secondary mem-
ory, allows the permanent storage of large quantities of data. Some method
of magnetic recording on magnetic disks or tapes is most commonly used.
More recently optical methods which rely upon marks etched by a laser
beam on the surface of a disc (CD-ROM) have become popular, although
they remain more expensive than magnetic media. The capacity of exter-
nal memory is high, usually measured in hundreds of megabytes or even
in gigabytes (thousand million bytes) at present. External memory has
the important property that the information stored is not lost when the
computer is switched off.

The most common form of external memory is a hard disc which is
permanently installed in the computer and will typically have a capacity of
hundreds of megabytes. A hard disc is a flat, circular oxide-coated disc which
rotates continuously. Information is recorded on the disc by magnetising
spots of the oxide coating on concentric circular tracks. An access arm in
the disc drive positions a read/write head over the appropriate track to read
and write data from and to the track. This means that before accessing
or modifying data the read/write head must be positioned over the correct
track. This time is called the seek time and is measured in milliseconds.

14

There is also a small delay waiting for the appropriate section of the track
to rotate under the head. This latency is much smaller than the seek time.
Once the correct section of the track is under the head, successive bytes
of information can be transferred to the main memory at rates of several
megabytes per second. This discrepancy between the speed of access to the
first byte required, and subsequent bytes on the same track means that it
is not economic to transfer small numbers of bytes. Transfers are usually of
blocks of several hundred bytes or even more. Notice that the access time
to data stored in secondary storage will depend on its location.

The hard disc will hold all the software that is required to run the
computer, from the operating system to packages like word-processing and
spreadsheet programs. All the user’s data and programs will also be stored
on the hard disc. In addition most computers have some form of removable
storage device which can be used to save copies of important files etc. The
most common device for this purpose is a floppy disc which has a very lim-
ited capacity. Various magnetic tape devices can be used for storing larger
quantities of data and more recently removable optical discs have been used.

It is important to note that the CPU can only directly access data that
is in main memory. To process data that resides in external memory the
CPU must first transfer it to main memory. Accessing external memory to
find the appropriate data is slow (milliseconds) in relation to CPU speeds
but the rate of transfer of data to main memory is reasonably fast once it
has been located.

1.3 Input/Output Devices

When using a computer the text of programs, commands to the computer
and data for processing have to be entered. Also information has to be
returned from the computer to the user. This interaction requires the use
of input and output devices.

The most common input devices used by the computer are the keyboard
and the mouse. The keyboard allows the entry of textual information while
the mouse allows the selection of a point on the screen by moving a screen
cursor to the point and pressing a mouse button. Using the mouse in this way
allows the selection from menus on the screen etc. and is the basic method of
communicating with many current computing systems. Alternative devices
to the mouse are tracker balls, light pens and touch sensitive screens.

The most common output device is a monitor which is usually a Cath-
ode Ray Tube device which can display text and graphics. If hard-copy
output is required then some form of printer is used.

15

1.4 The system bus

All communication between the individual major components is via the sys-
tem bus. The bus is merely a cable which is capable of carrying signals
representing data from one place to another. The bus within a particular
individual computer may be specific to that computer or may (increasingly)
be an industry-standard bus. If it is an industry standard bus then there
are advantages in that it may be easy to upgrade the computer by buying a
component from an independent manufacturer which can plug directly into
the system bus. For example most modern Personal Computers use the PCI
bus.

When data must be sent from memory to a printer then it will be sent
via the system bus. The control signals that are necessary to access memory
and to activate the printer are also sent by the CPU via the system bus.

1.5 More about memory and information repre-
sentation

All information inside the computer and on external storage devices is repre-
sented in a form related to the Binary number system. Binary is a number
system which uses the base 2 instead of the base 10 decimal system that
is used in normal life. In the decimal system a positional number system
is used which allows all numbers to be expressed using only the digits 0–9.
Successive digits from the right represent the number of the corresponding
power of 10. Thus 123 in decimal is

1× 102 + 2× 101 + 3× 100

that is, one hundred, plus two tens, plus three units. Similarly the binary
number system builds all numbers from the bits 0 and 1, and powers of 2.
101 in the binary number system represents the number with value

1× 22 + 0× 21 + 1× 20

which is of course the decimal number 5. Using the binary system allows
all computation inside the computer to take place using cheap two-state
electronic devices.

Modern computers organise information into small units called bytes
which hold eight bits, each bit representing a 0 or a 1. Each byte may
hold a single character of text or a small integer. Larger numbers, computer
instructions and character strings occupy several bytes.

The main memory can be thought of as a series of bytes numbered from
0, 1, 2, 3, . . . upwards, each byte containing a pattern of eight bits which
can be accessed by the CPU when it supplies the number, or Address, of

16

the byte required. For example consider the section of memory illustrated
below:

Address Contents

3168 10110111
3167 01000111
3166 01010101

The byte with the address 3167 contains the binary pattern 01000111.
Depending on circumstances the CPU may interpret this as an instruction,
as a number (or part of a number) or as a character. This pattern can
represent the character G in the ASCII character code that is used almost
universally now or it could represent the decimal number 71.

It is important to keep a clear distinction in your mind of the difference
between the address of a memory location and the contents of that memory
location.

1.5.1 Representation of information in external memory

Information on external memory is organised into files, each file containing
some related information. For example a file could hold the text of a doc-
ument, a computer program, a set of experimental results etc. Just as in
main memory the information in a file is represented as a collection of bytes.

1.6 The execution cycle

When a computer obeys the instructions in a computer program it is said to
be running or executing the program. Before a computer can execute a
computer program the program must be resident in memory. The program
must occupy a set of consecutive bytes in memory and must be written in
the internal machine language for the computer. Each CPU has its own
machine language which means that before a program can be executed on
another CPU it has to be re-written in the internal machine language of the
other CPU.

The concept that the program to be executed is stored in the computer
memory is an important one. This is what makes the computer such a
general-purpose problem-solving machine — merely by changing the pro-
gram stored in memory the computer can be used to carry out an entirely
different task.

Once the program is loaded into memory then the following sequence is
carried out:

set instruction address to the address of

17

the first instruction
while program not finished

{
fetch instruction from current instruction address
update current instruction address
execute the fetched instruction
}

This sequence is usually called the fetch-execute cycle.

1.7 Summary

• A computer consists of a Central Processing Unit(CPU), memory and
various devices which can be categorised as Input/Output Devices.
Information is communicated between these separate units by the Sys-
tems Bus.

• The Central Processing Unit (CPU) consists of a Control Unit and an
Arithmetic/Logic Unit (ALU). The control unit controls the opera-
tion of the peripheral devices and the transfer of information between
the units that make up the computer. The Arithmetic/Logic Unit
performs calculation.

• The memory of the computer is split into main memory and external
memory.

• Main memory is fast and limited in capacity. The CPU can only
directly access information in main memory. Main memory cannot
retain information when the computer is switched of. Main memory
consists of a series of numbered locations called bytes, each byte being
eight bits. The number associated with a byte is the address of the
byte.

• Secondary memory is slow and virtually unlimited in capacity. It
retains information when the computer is switched off. Information
on external memory can only be accessed by the CPU if it is first
transferred to main memory.

• The internal representation of information in the computer and on
external memory is in terms of the Binary system using only the basic
symbols 0 and 1.

• Programs to be executed by the computer are placed in main mem-
ory and the CPU fetches each instruction in turn from memory and
executes it.

18

• Each type of CPU has its own machine language, the set of instructions
it can obey.

1.8 Multiple Choice Questions

1. What are the five main components of a computer system?

(a) CPU, CD-rom, mouse, keyboard, sound card
(b) Memory, Video Card, Monitor, Software, Hardware.
(c) Modem, Keyboard, Word Processor, Printer, Screen.
(d) CPU, memory, system bus, input, output

2. How do the main components of the computer communicate with each
other?

(a) system bus
(b) memory
(c) keyboard
(d) monitor

1.9 Review Questions

1. What are the tasks carried out by the Central Processing Unit

2. What are the major differences between main memory and external
memory?

3. What is stored in main memory? What is stored in external memory?

4. How is information represented inside computer systems?

5. In the following diagram of memory what are the contents of the mem-
ory location with the address 98? What is the address of the memory
location whose contents are 10100101? What could these contents
represent?

100 00010010
99 10100101
98 11011101

6. What has to be done before a program can be executed in a computer?
How is the program executed by the CPU?

7. What benefit derives from the ‘stored program concept’?

19

Lesson 2

Programming Languages

As noted in section 1.6 all computers have an internal machine language
which they execute directly. This language is coded in a binary represen-
tation and is very tedious to write. Most instructions will consist of an
operation code part and an address part. The operation code indicates
which operation is to be carried out while the address part of the instruc-
tion indicates which memory location is to be used as the operand of the
instruction. For example in a hypothetical computer successive bytes of a
program may contain:

operation
code address meaning

00010101 10100001 load c(129) into accumulator
00010111 10100010 add c(130) to accumulator
00010110 10100011 store c(accumulator) in location 131

where c() means ‘the contents of’ and the accumulator is a special register
in the CPU. This sequence of code then adds the contents of location 130
to the contents of the accumulator, which has been previously loaded with
the contents of location 129, and then stores the result in location 131.
Most computers have no way of deciding whether a particular bit pattern is
supposed to represent data or an instruction.

Programmers using machine language have to keep careful track of which
locations they are using to store data, and which locations are to form the
executable program. Programming errors which lead to instructions being
overwritten with data, or erroneous programs which try to execute part of
their data are very difficult to correct. However the ability to interpret
the same bit pattern as both an instruction and as data is a very power-
ful feature; it allows programs to generate other programs and have them
executed.

20

2.1 Assembly Language

The bookkeeping involved in machine language programming is very tedious.
If a programmer is modifying a program and decides to insert an extra data
item, the addresses of other data items may be changed. The programmer
will have to carefully examine the whole program deciding which bit patterns
represent the addresses which have changed, and modify them.

Human beings are notoriously bad at simple repetitive tasks; computers
thrive on them. Assembly languages are a more human friendly form of
machine language. Machine language commands are replaced by mnemonic
commands on a one-to-one basis. The assembler program takes care of con-
verting from the mnemonic to the corresponding machine language code.
The programmer can also use symbolic addresses for data items. The as-
sembler will assign machine addresses and ensure that distinct data items
do not overlap in storage, a depressingly common occurrence in machine
language programs. For example the short section of program above might
be written in assembly language as:

operation
code address

LOAD A
ADD B
STORE C

Obviously this leaves less scope for error but since the computer does not
directly understand assembly language this has to be translated into ma-
chine language by a program called an assembler. The assembler replaces
the mnemonic operation codes such as ADD with the corresponding binary
codes and allocates memory addresses for all the symbolic variables the pro-
grammer uses. It is responsible for associating the symbol A, B, and C with
an addresses, and ensuring that they are all distinct. Thus by making the
process of programming easier for the human being another level of process-
ing for the computer has been introduced. Assembly languages are still used
in some time-critical programs since they give the programmer very precise
control of what exactly happens inside the computer. Assembly languages
still require that the programmer should have a good knowledge of the in-
ternal structure of the computer. For example, different ADD instructions
will be needed for different types of data item. Assembly languages are still
machine specific and hence the program will have to be re-written if it is to
be implemented on another type of computer.

21

2.2 High level Languages

Very early in the development of computers attempts were made to make
programming easier by reducing the amount of knowledge of the internal
workings of the computer that was needed to write programs. If programs
could be presented in a language that was more familiar to the person solv-
ing the problem, then fewer mistakes would be made. High-level program-
ming languages allow the specification of a problem solution in terms closer
to those used by human beings. These languages were designed to make pro-
gramming far easier, less error-prone and to remove the programmer from
having to know the details of the internal structure of a particular computer.
These high-level languages were much closer to human language. One of the
first of these languages was Fortran II which was introduced in about 1958.
In Fortran II our program above would be written as:

C = A + B

which is obviously much more readable, quicker to write and less error-prone.
As with assembly languages the computer does not understand these high-
level languages directly and hence they have to be processed by passing them
through a program called a compiler which translates them into internal
machine language before they can be executed.

Another advantage accrues from the use of high-level languages if the
languages are standardised by some international body. Then each manu-
facturer produces a compiler to compile programs that conform to the stan-
dard into their own internal machine language. Then it should be easy to
take a program which conforms to the standard and implement it on many
different computers merely by re-compiling it on the appropriate computer.
This great advantage of portability of programs has been achieved for several
high-level languages and it is now possible to move programs from one com-
puter to another without too much difficulty. Unfortunately many compiler
writers add new features of their own which means that if a programmer uses
these features then their program becomes non-portable. It is well worth
becoming familiar with the standard and writing programs which obey it,
so that your programs are more likely to be portable.

As with assembly language human time is saved at the expense of the
compilation time required to translate the program to internal machine lan-
guage. The compilation time used in the computer is trivial compared with
the human time saved, typically seconds as compared with weeks.

Many high level languages have appeared since Fortran II (and many
have also disappeared!), among the most widely used have been:

22

COBOL Business applications
FORTRAN Engineering & Scientific Applications
PASCAL General use and as a teaching tool
C & C++ General Purpose - currently most popular
PROLOG Artificial Intelligence
JAVA General Purpose, gaining popularity rapidly,

All these languages are available on a large variety of computers.

2.3 Summary

• Each CPU has its own internal machine language. Programming at
this internal machine level is usually carried out in Assembly language
which is machine specific and relates on an instruction to instruction
basis to the internal machine language.

• High-level languages are translated by a compiler program into inter-
nal machine language. The compiled code is linked with any system
libraries required and the final program loaded into memory before
execution of the program can take place.

• If an agreed standard is produced for a high-level language then any
program which conforms to the standard should be able to run on any
computer after compiling it with a machine-specific compiler. This
gives the advantage of portability of programs.

2.4 Multiple Choice Questions

1. What is the only language that a computer understands directly?

(a) English, as spoken in Boston, Mass.

(b) BASIC, the Beginners’ All-purpose Symbolic Instruction Code

(c) machine language, different for every type of CPU

2. What are the three main types of computer programming languages?

(a) machine language, assembly language, high level language

(b) imperative language, functional language, declarative language

(c) COBOL, Fortran-77, C++

3. From the point of view of the programmer what are the major advan-
tages of using a high-level language rather than internal machine code
or assembler language?

23

(a) Program portability

(b) Easy development

(c) Efficiency

24

Lesson 3

Operating Systems

The Operating System of a computer is a large program which manages
the overall operation of the computer system. On a simple one-user com-
puter the Operating System will:

1. Provide an interface to allow the user to communicate with the com-
puter. This interface may be a text-oriented interface where the user
types commands in response to a prompt from the computer or may
be a mouse-driven Windows operating system.

2. Control the various peripherals e.g. Keyboard, Video Display Unit
(VDU), Printer etc. using special programs called Device Drivers.

3. Manage the user’s files, keeping track of their positions on disk, updat-
ing them after user makes changes to them etc. An important facility
that the Operating System must supply in this respect is an Editor
which allows users to edit their files.

4. Provide system facilities, e.g. Compilers to translate from high-level
programming languages used by the user to the internal machine lan-
guage the computer uses.

Because of the disparity in speed between input/output devices (and
the human entering data) and the CPU most modern operating systems
will allow Multi-tasking to take place. Thus while the Computer is held
up waiting for input from one program the operating system will transfer
control to another program which can execute until it, in turn, is held up.
Multi-tasking may take place in a stand-alone computer (for example using
an operating system such as Windows 95 on a PC) and allow the user to
simultaneously use several different programs simultaneously. For example
a user may be running a large computational task in the background while
using a word-processor package to write a report.

It is now common for computers to be linked together in networks.
The network may consist of many dumb terminals, Personal Computers

25

and workstations linked together with perhaps several larger, more powerful
computers which provide a large amount of computer power and file storage
facilities to the network. This allows many people access to computing
facilities and access to common data-bases, electronic mail facilities etc.
Networks may be local to a building or a small area (Local Area Network
(LAN)) or connect individual networks across the country or world (Wide
Area Network (WAN)).

A particular form of network operating system is a Timesharing op-
erating system. Many large modern computers are set up to serve many
simultaneous users by means of a time-sharing system. Each user has a
direct connection to a powerful central computer, normally using a Visual
Display Unit (VDU) which has a keyboard (and often a mouse) for user
input and a screen for feedback from the computer to the user. There may
be several hundred simultaneous users of a large computing system. Com-
puting is Interactive in that the time from a user entering a command
until a response is obtained will typically be a few seconds or less. The
Operating System will cycle in turn through each connected terminal and if
the terminal is awaiting computation will give it a Time-slice of dedicated
CPU time. This process is continuous thus each program receives as many
time-slices as it requires until it terminates and is removed from the list of
programs awaiting completion.

In a system with multiple users the operating system must also carry
out other tasks such as:

1. Validating the user’s rights to use the system

2. Allocating memory and processor time to individual programs

3. Maintaining the security of each user’s files and program execution

In a time-sharing system the processing power is contained in a central
machine. Users access this central machine from a non-intelligent terminal
that can do no processing itself. The advent of cheap powerful workstations
has lead to the distribution of computer power around the network. A
distributed computer system consists of a central processor with a large
amount of disk storage and powerful input/output facilities connected to a
network of machines, each with its own main memory and processor.

The central processor (or Server) provides storage for all system files
and user files. Each computing node in the network downloads any files
and system facilities it requires from the server and then carries out all
computation internally. Any changes to files or new files generated have to
be sent by the network to the server. To make it easier to find a particular file
it is usual to collect all related files into a separate directory. Each user
will be allocated a certain amount of space on the external memory, this
space will be set up as a single directory called the user’s home directory.

26

The user can further split this space into various other directories. For
example a lecturer writing a course may well set up a directory to contain
all the files relevant to the course. Within this directory it is best to organise
the files into groups by setting up various sub-directories, a sub-directory
to hold course notes, another to hold tutorials, another to hold laboratory
sheets etc. Within one of these directories, say the tutorials directory, will
be held the relevant files — tutorial1, tutorial2 etc. This hierarchical file
storage structure is analogous to the storage of related files in a filing system.
A filing cabinet could hold everything relevant to the course, each drawer
could hold a different sub-division, such as notes, and each folder within the
drawer would be a particular lecture.

Space will also be allocated on the server for system files. These also
will be allocated to directories to facilitate access by the operating system.

3.1 Summary

• The operating system provides an interface between the user and the
computer and controls the internal operation of the computer and its
peripherals. It also manages the users’ files and system utilities such
as compilers, editors, application packages etc.

• Computer networks allow many users to simultaneously access com-
puter facilities, to access common data-bases and to use facilities such
as electronic mail.

• Files are stored in external storage in a hierarchical structure of direc-
tories. Each user will have their own home directory and the operating
system facilities will be allocated to system directories.

3.2 Multiple Choice Questions

1. The Operating System is responsible for

(a) Controlling peripheral devices such as monitor, printers, disk
drives

(b) Detecting errors in users’ programs

(c) Make the coffee

(d) Provide an interface that allows users to choose programs to run
and to manipulate files

(e) Manage users’ files on disk

2. Which of the following does an operating system do in a stand-alone
computer system?

27

(a) Manages the user’s files.

(b) Provides the system facilities.

(c) Provides the interface to allow the user to communicate with the
computer.

(d) Controls the various peripherals

3. Which is the following is TRUE about a terminal on a Time-sharing
computer system?

(a) Has its own CPU and some memory.

(b) Has no memory or CPU of its own.

4. Which is the following is TRUE about a terminal on a Distributed
computer system?

(a) Has its own CPU and some memory.

(b) Has no memory or CPU of its own.

28

Lesson 4

Preparing a Computer
Program

There are various steps involved in producing a computer program for a
particular application. These steps are independent of which computer or
programming language that is used and require the existence of certain
facilities upon the computer. The steps are:

1. Study the requirement specification for the application. It is im-
portant that the requirements of the application should be well speci-
fied. Before starting to design a program for the application it is nec-
essary that the requirement specification is complete and consistent.
For example a requirement specification that says ‘write a program to
solve equations’ is obviously incomplete and you would have to ask for
more information on ‘what type of equations?’, ‘how many equations?’,
‘to what accuracy?’ etc.

2. Analyse the problem and decide how to solve it. At this stage one
has to decide on a method whereby the problem can be solved, such a
method of solution is often called an Algorithm.

3. Translate the algorithm produced at the previous step into a suitable
high-level language. This written form of the program is often called
the source program or source code. At this stage the program
should be read to check that it is reasonable and a desk-check carried
out to verify its correctness. A programmer carries out a desk-check
by entering a simple set of input values and checking that the correct
result is produced by going through the program and executing each
instruction themselves. Once satisfied that the program is reasonable
it is entered into the computer by using an Editor.

4. Compile the program into machine-language. The machine language
program produced is called the object code. At this stage the com-

29

piler may find Syntax errors in the program. A syntax error is a
mistake in the grammar of a language, for example C++ requires that
each statement should be terminated by a semi-colon. If you miss this
semi-colon out then the compiler will signal a syntax error. Before pro-
ceeding any syntax errors are corrected and compilation is repeated
until the compiler produces an executable program free from syntax
errors.

5. The object code produced by the compiler will then be linked with
various function libraries that are provided by the system. This takes
place in a program called a linker and the linked object code is then
loaded into memory by a program called a loader.

6. Run the compiled, linked and loaded program with test data. This
may show up the existence of Logical errors in the program. Logical
errors are errors that are caused by errors in the method of solution,
thus while the incorrect statement is syntactically correct it is asking
the computer to do something which is incorrect in the context of the
application. It may be something as simple as subtracting two numbers
instead of adding them. A particular form of logical error that may
occur is a run-time error. A run-time error will cause the program
to halt during execution because it cannot carry out an instruction.
Typical situations which lead to run-time errors are attempting to
divide by a quantity which has the value zero or attempting to access
data from a non-existent file.

The program must now be re-checked and when the error is found it is
corrected using the Editor as in (3) and steps (4) and (5) are repeated
until the results are satisfactory.

7. The program can now be put into general use - though unless the
testing was very comprehensive it is possible that at some future date
more logical errors may become apparent. It is at this stage that good
documentation produced while designing the program and writing
the program will be most valuable, especially if there has been a con-
siderable time lapse since the program was written.

4.1 Summary

• Before a computer program can be written the requirements of the
application must be investigated and defined comprehensively and un-
ambiguously . This leads to the production of the requirements spec-
ification.

• A precise set of instructions to solve a problem is called an algorithm.

30

The first step in writing a computer program is to produce an algo-
rithm.

• Once the algorithm is designed it must be translated into a suitable
high-level programming language. This program is then compiled to
machine code, linked with any system libraries required and loaded
into memory. At the compilation stage syntactic errors in the program
may be found and have to be corrected before any further progress can
be made.

• Once the program has been compiled, linked and loaded it can be
tested with realistic test data. Testing may show up the presence of
logical errors in the program. These may lead to the production of
wrong results or cause the program to halt on a run-time error.

4.2 Multiple Choice Questions

1. A compiler produces an error in compiling a program because a closing
round bracket has been missed out in the source code. What type of
error is this?

(a) Syntax Error

(b) Logical Error

(c) Linker Error

4.3 Review Questions

1. What are the steps involved in going from the specification of a prob-
lem to producing an executable program which will solve the problem?

2. What types of error can occur in computing and at what stages of the
processes of producing a program do they occur?

3. When the program is running it produces a number that is too large
to fit into the space allocated for it in memory. What type of error is
this?

4. A program runs without any errors being reported but outputs results
that are wrong, what type of error is likely to have caused this?

31

Lesson 5

Algorithms

Informally, an algorithm is a series of instructions which if performed in
order will solve a problem. For an algorithm to be suitable for computer use
it must possess various properties:

1. Finiteness: The algorithm must terminate after a finite number of
steps. For example the algorithm:

produce first digit of 1/7.
while there are more digits of 1/7 do

produce next digit.

never terminates because 1/7 cannot be expressed in a finite number
of decimal places.

2. Non-ambiguity: Each step must be precisely defined. For example
the statement

set k to the remainder when m is divided by n.

is not precise because there is no generally accepted definition for what
the remainder is when m is divided by n when m and n are negative.
Different programming languages may well interpret this differently.

3. Effectiveness: This basically means that all the operations performed
in the algorithm can actually be carried out, and in a finite time. Thus
statements like ‘if there are 5 successive 5’s in the expansion of π then
. . . ’ may not be able to be answered.

Even if an algorithm satisfies the above criteria it may not be a practical
way of solving a problem. While an algorithm may execute in a finite time it
is not much use if that finite time is so large as to make solution completely
impractical. Thus there is a lot of interest in finding ‘good’ algorithms which
generate correct solutions in a short time compared with other algorithms.

32

In sorting 10,000 numbers into ascending order a ‘good’ algorithm executing
on a PC took less than a second while a ‘poor’ algorithm took over 10
minutes.

5.1 Describing an Algorithm

A simple example is used to look at the problem of designing an algorithm
in a suitable form for implementation on a computer. The simple computa-
tional problem considered is:

Write a program to input some numbers and output their aver-
age.

This is a very informal specification and is not complete enough to define
exactly what the program should do. For example where are the numbers
going to come from—entered by the user from the keyboard or perhaps read
from a file? Obviously to find the average of a series of numbers one adds
them together to find their sum and then divides by the number of numbers
in the series. So how is the number of numbers entered known? For example
it could be input as part of the data of the program or the program could
count the numbers as they are entered. This supposes that the program has
some way of knowing when the user has stopped entering numbers or when
the end of the file has been reached. Another important question is ‘what
should the program do if no data is entered?’. It would then be nonsensical
to print out an average value! Keeping these questions in mind leads to the
following more specific requirement specification:

Write a program which inputs a series of numbers and outputs
their average. The numbers are supplied in a data file and are
terminated by an end-of-file marker. In the event that the file is
empty a message to that effect should be output.

An algorithm is now required to solve this problem. Obviously the algo-
rithm could be described by ‘read in the numbers from the file, add them up
and divide by the number of numbers to get the average’. In practice this
algorithmic description is not sufficiently detailed to describe a computer
algorithm. The computer can only carry out simple instructions like ‘read a
number’, ‘add a number to another number’, etc. Thus an algorithm must
be described in such simple terms. Consider the following first version of a
solution:

33

1 carry out any initialisations required.
2 while not reached end of file do
3 {
4 read in next number.
5 add the number to the accumulated sum.
6 increment the count of numbers input.
7 }
8 evaluate the average.

Note that the line numbers are not required, they are merely for refer-
ence. It is commonplace in computer algorithms that certain initialisations
have to be carried out before processing begins. Hence as a reminder that
this might be necessary a phrase is inserted to indicate that initialisation
may be required at the beginning of every algorithm description as in line
1. Once the rest of the algorithm has been developed this initialisation step
can be expanded to carry out any initialisations that are necessary.

At line 2 a statement is used which describes a loop. This loop executes
the statements contained between the brackets in lines 3–7 continuously as
long as the condition ‘not reached end of file’ remains true. The brackets
are used to show that the statements in lines 4, 5 and 6 are associated to-
gether and are executed as if they were one statement. Without the brackets
only statement 4 would be executed each time round the loop. This is not
the only repetition statement that may be used, others are possible and
will be seen later. In the body of the loop, lines 4–6, each instruction is
a simple executable instruction. Once the end of the file is reached then
control transfers from the loop to the next instruction after the loop, eval-
uating the average at line 8. This requires more expansion, since, if there
are no numbers input then the average cannot be evaluated. Hence line 8 is
expanded to:

8a if no numbers input
8b then print message ‘no input’
8c otherwise {
8d set average equal to the accumulated sum
8e divided by the number of numbers.
8f print the average.
8g }

Here a conditional statement has been used with the condition ‘no
numbers input’, if this is true then the statement after the then is executed,
while if it is not true the statement after the otherwise is executed. This
process is often called a ‘Selection’ process.

On studying the above algorithm it is obvious that the process carried
out is what a human being might do if given a sheet of paper with many
numbers on it and asked to find the average. Thus a person might run their

34

finger down the numbers adding them as they go to an accumulated total
until there were no more and then counting the number of numbers and
dividing the total by this number to get the average. When this is done it
is implicit in their reasoning that the total and the count will both start
of at zero before starting to process the numbers. This is not obvious to
the computer at all, hence it must be remembered in describing computer
algorithms to initialise all sum accumulation variables and counters suitably
before commencing processing. Also it must be ensured that processing
starts at the beginning of the file. Hence the initialisation (line 1) can be
expanded as follows:

1a set accumulated sum to zero.
1b set number count to zero.
1c open file ready to read first data item.

Note that if there were no data items in the file then the first element
in the file would be the end-of-file marker. Thus the ‘while-loop’ condition
would be false initially so the loop would not be executed and the number
of numbers would remain at zero. This would ensure that the condition at
line 8a was true hence the appropriate message would be output.

The whole algorithm is now:

set accumulated total to zero.
set number count to zero.
open file ready to read first item.
while not at end of file do

{
read next number from file.
add number to accumulated total.
increment number count.
}

if number count is zero
then print message ‘no input’
otherwise {

set average to accumulated total divided
by the number count.

print average.
}

5.2 Statements required to describe algorithms

Very few statement types have been used in describing the above algorithm.
In fact these few statement types are sufficient to describe all computer
algorithms. In practice other forms of loop may be introduced but they can

35

all be implemented using the while loop used in the previous section. The
following basic concepts are required:

1. The idea that statements are executed in the order they are written.
Sequence.

2. A construct that allows the grouping of several statements together so
that they can be handled as if they were one statement by enclosing
them in brackets. Compound Statement.

3. A construct that allows the repetition of a statement or compound
statement several times. Repetition.

4. A construct that allows the selection of the next statement to execute
depending on the value of a condition. Selection.

5. The ability to assign a value to a quantity. Assignment.

All high-level programming languages have equivalents of such construc-
tions and hence it would be very easy to translate the above algorithm into a
computer program. In fact each statement of this algorithm can be written
as a statement in the language C++.

If you compare the following program written in C++ with the algorithm
you should be able to spot the similarities. Note that the program as written
is not complete, it would require further declarations and definitions to be
added before the compiler would accept it as syntactically correct. What is
listed here are the executable statements of the program.

36

ins.open(infile);
total = 0;
count = 0;
while (!ins.eof())

{
ins >> number;
total = total + number;
count = count + 1;

}
if (count == 0)

{
cout << "No input" << endl;

}
else

{
average = total/count;
cout << "Average is "

<< average
<< endl;

}
ins.close(infile);

5.3 Verifying the correctness of the algorithm

Before proceeding to implement an algorithm as a program it should be
checked for correctness. There are formal ways of doing this but informal
methods are used here.

In considering the algorithm just developed the general case, i.e. there
are numbers in the file, is checked first. After opening the file the current
reading point is set at the first number. On entering the loop statement
the current number is read and the reading point in the file is advanced to
the next item. Ultimately the the end-of-file marker will be the next item
to be read and the condition ‘not at end of file’ becomes false and exit is
made from the loop. This shows that inside the loop numbers only are read
from the file and no attempt is made to treat the end-of-file marker as a
number. Hence all the numbers in the file are read but nothing more. By
studying the body of the loop it is seen that every time a number is read it
is added to the accumulated total and the count is incremented. Hence as
both these quantities start of at zero and the body of the loop is executed
for each number in turn the accumulated total and number count must be
correct, hence the average must be correct.

Having checked the general case any boundary conditions should then
be checked. In this case the only boundary condition is the case of the file

37

being empty. In this case the count is initialised to zero, the body of the loop
is never executed hence the number count remains at zero. The condition
‘number count is zero’ in the conditional statement is then true and the
appropriate message is output.

This form of informal reasoning should be applied to check an algorithm
before implementing it as a program.

5.3.1 Desk-checking

Another way of testing the logic of programs is to carry out a desk-check,
that is execute the statements of the algorithm yourself on a sample data
set. This method of course is not foolproof, you would have to be sure that
you traversed all possible paths through your algorithm, this might require
you to use many data sets. It is useful to use a tabular layout for this. For
example say the initial data file was

2 6 eof

then a tabular layout as follows could be used:

file number count total average

2 6 eof before initialisation

*
2 6 eof 0 0 after initialisation

*
2 6 eof 2 1 2 after first loop execution

*
2 6 eof 6 2 8 after second loop execution

*
2 6 eof 6 2 8 4 exit loop, evaluate average

The * indicates the file element which is available for reading on the next
input statement. Obviously this gives the correct result for this file. This
simple file is adequate to check the general case here because there are only
two paths through this algorithm. The other path is the case where the file
is empty. This could be checked in the same way.

5.4 Series Minimum and Maximum Algorithm

Consider the following requirement specification:

38

A user has a list of numbers and wishes to find the minimum
value and the maximum value in the list. A program is required
which will allow the user to enter the numbers from the keyboard
and which will calculate the minimum and maximum values that
are input. The user is quite happy to enter a count of the num-
bers in the list before entering the numbers.

A first version at an algorithm for this might be:

initialise.
get count of numbers.
enter numbers and find maximum and minimum.
output results.

The algorithm is now made completely general to allow for a list with
no numbers in it, this may seem a bit stupid but it is not uncommon when
writing a general-purpose function to allow for the possibility of null input.
A user might change their mind after calling the program for example and it
is sensible that the program should respond sensibly if the user enters zero
for the count. Incorporating this into the algorithm above gives the next
version:

initialise.
get count of numbers.
if count is zero

then exit
otherwise {

enter numbers and find maximum
and minimum.

output results.
}

Once the count of the numbers is known then a loop has to be executed
that number of times, each time reading in a number and somehow using
that number in finding the maximum and minimum of the numbers. In this
loop the number of times the loop is executed is known, i.e. equal to the
count of numbers. Thus another type of repetition command is introduced:

loop n times
{
body of loop.
}

This operation of repeating some set of instructions, the body of the
loop, a set number of times occurs frequently in algorithm design. Note
that braces have been used to make the body of the loop into a compound

39

statement. Each time the loop is executed it is the instructions between
the braces that are executed.
Hence the following version of the algorithm:

initialise.
get count of numbers.
if count is zero

then exit
otherwise {

loop count times
{
enter a number.
process the number.
}

output results.
}

It has not yet been considered how to compute the maximum and min-
imum values so this has been indicated by using the phrase ‘process the
number’. Given a large list of numbers written down on a sheet of paper
how could the smallest number in the list be found in a methodical fashion?
One way would be to start at the beginning of the list and work through
the list systematically always remembering the smallest number seen so far,
whenever a number is found smaller than the memorised number the mem-
orised number is replaced by the smaller number. At the start of the list the
smallest number yet seen is of course the first number, and when the end of
the list is reached the memorised number is the smallest. Similarly for the
largest number. Hence the following expansion:

get count of numbers.
if count is zero

then exit
otherwise {

get first number.
set small to number.
set large to number.
loop count-1 times

{
enter a number.
if number is less than small

then set small to number.
if number is greater than large

then set large to number.
}

print small and large.

40

}

In this algorithm no initialisation is required at the beginning, the only
quantities that have to be initialised are small and large, and they are ini-
tialised to the first number entered by the user. Similarly count is entered
by the user and requires no initialisation.

A brief reading of this should convince us that this algorithm is correct.
If the user enters zero for the count then exit takes place immediately. If
the user enters a non-zero count the first number is input, then the loop is
executed count-1 times and one number is entered in each execution of the
loop body. This means that 1 plus count-1 numbers are entered so all input
numbers are considered. Large and small are initialised to the first number
entered and each time round the loop are updated if the current number
is larger or smaller than the memorised large or small. The boundary case
where the count is zero has been considered but there is another boundary
case here, namely count equal to one. If count is equal to 1 then large
and small are set to the single number and the loop is executed zero times,
hence when large and small are output they are set to the only number
input, which is the correct result.

It is worth checking this algorithm by doing a simple desk check, say
with the following data:

count = 5
numbers are 3 5 1 7 2

The different values taken during the algorithm are as follows:

count number large small

- - - - begin
5 - - - enter count
5 3 3 3 enter first number
5 5 5 3 first loop execution
5 1 5 1 second loop execution
5 7 7 1 third loop execution
5 2 7 1 final loop execution

The symbol ‘-’ has been used to indicate an unknown value. At the end
of execution of the algorithm large and small do hold the correct maximum
and minimum values

5.5 Summary

• An algorithm is a sequence of steps which will produce a solution to a
problem.

41

• An algorithm must be finite, non-ambiguous and effective.

• The basic control structures used in specifying an algorithm are se-
quence, selection and repetition.

• A compound statement allows several statements to be grouped
together as a single entity.

• The process of giving a value to an object is called assignment

• A selection control structure allows the next statement to be executed
to be determined based on the value of some condition.

• A repetition control structure allows a statement or group of state-
ments to be executed repeatedly.

5.6 Multiple Choice Questions

1. Which of the following are essential statement types for describing
algorithms?

(a) sequence

(b) selection

(c) repetition

2. What is a condition?

(a) A value which is true or false

(b) A numerical value

5.7 Review Questions

1. What are the types of control structure used in describing algorithms?

2. What is a condition?

3. Why may an algorithm be finite and yet impractical to use?

4. How would you endeavour to show that an algorithm you have pro-
duced is correct?

42

5.8 Exercises

1. A program is required which will read in the breadth and height of a
rectangle and which will output the area and the length of the perime-
ter of the rectangle. Write an algorithm for this problem.

2. The requirement specified in question 1 is extended to include the
requirement that if the entered breadth and height are equal then
the output should be ‘the area and perimeter of the square are . . . ’
whereas if they are not equal then the output should be ‘the area
and perimeter of the rectangle are . . . ’. Alter the algorithm that you
produced for question 1 to take account of this new requirement.

3. A series of positive numbers are to be entered from the keyboard with
the end of the series indicated by a negative number. The computer
should output the sum of the positive numbers. Write an algorithm
for this task. Use a while type of loop with the condition ‘number
just entered is positive’. Think carefully about what initialisations
are required before entering the while loop. Do a desk check of your
algorithm with a small data set, say 3 positive numbers then a negative
number. What would your algorithm do if the user entered a negative
number first? Is what your algorithm would do in this circumstance
sensible?

4. Extend the algorithm in the previous question so that it also counts
the number of numbers entered in the series.

5. Another form of repetition statement is a repeat loop. This has the
form:

repeat
statement 1.

.
statement n.

until condition

which executes the statements contained between repeat and until
until the condition becomes true. For example to allow a user of a
program the chance to re-run it with a new set of data a repeat loop
might be used as follows:

repeat
enter and process data.
ask if user wishes to process more data.
read reply.

until reply is no

43

Now extend your algorithm for question 2 so that it repeats entering
the dimensions of rectangles and calculating the results. After each
calculation the user should be asked if they wish to continue.

44

Lesson 6

A simple C++ program

Before looking at how to write C++ programs consider the following simple
example program.

// Sample program
// IEA September 1995
// Reads values for the length and width of a rectangle
// and returns the perimeter and area of the rectangle.

#include <iostream.h>

void main()
{

int length, width;
int perimeter, area; // declarations
cout << "Length = "; // prompt user
cin >> length; // enter length
cout << "Width = "; // prompt user
cin >> width; // input width
perimeter = 2*(length+width); // compute perimeter
area = length*width; // compute area
cout << endl

<< "Perimeter is " << perimeter;
cout << endl

<< "Area is " << area
<< endl; // output results

} // end of main program

rect 1.cpp

The following points should be noted in the above program:

45

1. Any text from the symbols // until the end of the line is ignored by the
compiler. This facility allows the programmer to insert Comments
in the program. Every program should at least have a comment in-
dicating the programmer’s name, when it was written and what the
program actually does. Any program that is not very simple should
also have further comments indicating the major steps carried out and
explaining any particularly complex piece of programming. This is
essential if the program has to be amended or corrected at a later
date.

2. The line

#include <iostream.h>

must start in column one. It causes the compiler to include the text of
the named file (in this case iostream.h) in the program at this point.
The file iostream.h is a system supplied file which has definitions in
it which are required if the program is going to use stream input or
output. All your programs will include this file. This statement is a
compiler directive — that is it gives information to the compiler
but does not cause any executable code to be produced.

3. The actual program consists of the function main which commences
at the line

void main()

All programs must have a function main. Note that the opening brace
({) marks the beginning of the body of the function, while the closing
brace (}) indicates the end of the body of the function. The word void
indicates that main does not return a value. Running the program
consists of obeying the statements in the body of the function main.

4. The body of the function main contains the actual code which is ex-
ecuted by the computer and is enclosed, as noted above, in braces
{}.

5. Every statement which instructs the computer to do something is ter-
minated by a semi-colon. Symbols such as main(), { } etc. are not
instructions to do something and hence are not followed by a semi-
colon.

6. Sequences of characters enclosed in double quotes are literal strings.
Thus instructions such as

cout << "Length = "

46

send the quoted characters to the output stream cout. The special
identifier endl when sent to an output stream will cause a newline to
be taken on output.

7. All variables that are used in a program must be declared and given a
type. In this case all the variables are of type int, i.e. whole numbers.
Thus the statement

int length, width;

declares to the compiler that integer variables length and width are
going to be used by the program. The compiler reserves space in
memory for these variables.

8. Values can be given to variables by the assignment statement, e.g.
the statement

area = length*width;

evaluates the expression on the right-hand side of the equals sign using
the current values of length and width and assigns the resulting value
to the variable area.

9. Layout of the program is quite arbitrary, i.e. new lines, spaces etc. can
be inserted wherever desired and will be ignored by the compiler. The
prime aim of additional spaces, new lines, etc. is to make the program
more readable. However superfluous spaces or new lines must not
be inserted in words like main, cout, in variable names or in strings
(unless you actually want them printed).

6.1 Variables

A variable is the name used for the quantities which are manipulated by a
computer program. For example a program that reads a series of numbers
and sums them will have to have a variable to represent each number as it
is entered and a variable to represent the sum of the numbers.

In order to distinguish between different variables, they must be given
identifiers, names which distinguish them from all other variables. This is
similar to elementary algebra, when one is taught to write “Let a stand for
the acceleration of the body . . . ”. Here a is an identifier for the value of the
acceleration. The rules of C++ for valid identifiers state that:

An identifier must:

• start with a letter

• consist only of letters, the digits 0–9, or the underscore
symbol _

47

• not be a reserved word

Reserved words are otherwise valid identifiers that have special significance
to C++. A full list is given below in section 6.1.1. For the purposes of C++
identifiers, the underscore symbol, _, is considered to be a letter. Its use
as the first character in an identifier is not recommended though, because
many library functions in C++ use such identifiers. Similarly, the use of
two consecutive underscore symbols, __, is forbidden.

The following are valid identifiers

length days_in_year DataSet1 Profit95
Int _Pressure first_one first_1

although using _Pressure is not recommended.
The following are invalid:

days-in-year 1data int first.val throw

Identifiers should be chosen to reflect the significance of the variable in
the program being written. Although it may be easier to type a program
consisting of single character identifiers, modifying or correcting the pro-
gram becomes more and more difficult. The minor typing effort of using
meaningful identifiers will repay itself many fold in the avoidance of simple
programming errors when the program is modified.

At this stage it is worth noting that C++ is case-sensitive. That is
lower-case letters are treated as distinct from upper-case letters. Thus the
word main in a program is quite different from the word Main or the word
MAIN.

6.1.1 Reserved words

The syntax rules (or grammar) of C++ define certain symbols to have
a unique meaning within a C++ program. These symbols, the reserved
words, must not be used for any other purposes. The reserved words already
used are int and void. All reserved words are in lower-case letters. The
table below lists the reserved words of C++.

48

C++ Reserved Words
and and_eq asm auto bitand
bitor bool break case catch
char class const const_cast continue
default delete do double dynamic_cast
else enum explicit export extern
false float for friend goto
if inline int long mutable
namespace new not not_eq operator
or or_eq private protected public
register reinterpret_cast return short signed
sizeof static static_cast struct switch
template this throw true try
typedef typeid typename union unsigned
using virtual void volatile wchar_t
while xor xor_eq

Some of these reserved words may not be treated as reserved by older
compilers. However you would do well to avoid their use. Other compilers
may add their own reserved words. Typical are those used by Borland
compilers for the PC, which add near, far, huge, cdecl, and pascal.

Notice that main is not a reserved word. However, this is a fairly tech-
nical distinction, and for practical purposes you are advised to treat main,
cin, and cout as if they were reserved as well.

6.2 Declaration of variables

In C++ (as in many other programming languages) all the variables that
a program is going to use must be declared prior to use. Declaration of a
variable serves two purposes:

• It associates a type and an identifier (or name) with the variable. The
type allows the compiler to interpret statements correctly. For exam-
ple in the CPU the instruction to add two integer values together
is different from the instruction to add two floating-point values to-
gether. Hence the compiler must know the type of the variables so it
can generate the correct add instruction.

• It allows the compiler to decide how much storage space to allocate
for storage of the value associated with the identifier and to assign an
address for each variable which can be used in code generation.

For the moment only four variable types are considered, namely, int,
float, bool and char. These types hold values as follows:

49

int variables can represent negative and positive integer values (whole num-
bers). There is a limit on the size of value that can be represented,
which depends on the number of bytes of storage allocated to an int
variable by the computer system and compiler being used. On a PC
most compilers allocate two bytes for each int which gives a range of
-32768 to +32767. On workstations, four bytes are usually allocated,
giving a range of -2147483648 to 2147483647. It is important to note
that integers are represented exactly in computer memory.

float variables can represent any real numeric value, that is both whole
numbers and numbers that require digits after the decimal point. The
accuracy and the range of numbers represented is dependent on the
computer system. Usually four bytes are allocated for float variables,
this gives an accuracy of about six significant figures and a range of
about −1038 to +1038. It is important to note that float values are
only represented approximately.

bool variables can only hold the values true or false. These variables
are known as boolean variables in honour of George Boole, an Irish
mathematician who invented boolean algebra.

char variables represent a single character — a letter, a digit or a punc-
tuation character. They usually occupy one byte, giving 256 different
possible characters. The bit patterns for characters usually conform
to the American Standard Code for Information Interchange (ASCII).

Examples of values for such variables are:

int 123 -56 0 5645

float 16.315 -0.67 31.567

char ’+’ ’A’ ’a’ ’*’ ’7’

A typical set of variable declarations that might appear at the beginning
of a program could be as follows:

int i, j, count;
float sum, product;
char ch;
bool passed_exam;

which declares integer variables i, j and count, real variables sum and
product, a character variable ch, and a boolean variable pass_exam.
A variable declaration has the form:

type identifier-list;

50

type specifies the type of the variables being declared. The identifier-list is
a list of the identifiers of the variables being declared, separated by commas.

Variables may be initialised at the time of declaration by assigning a
value to them as in the following example:

int i, j, count = 0;
float sum = 0.0, product;
char ch = ’7’;
bool passed_exam = false;

which assigns the value 0 to the integer variable count and the value 0.0
to the real variable sum. The character variable ch is initialised with the
character 7. i, j, and product have no initial value specified, so the program
should make no assumption about their contents.

6.3 Constants and the declaration of constants

Often in programming numerical constants are used, e.g. the value of π.
It is well worthwhile to associate meaningful names with constants. These
names can be associated with the appropriate numerical value in a constant
declaration. The names given to constants must conform to the rules
for the formation of identifiers as defined above. The following constant
declaration

const int days_in_year = 365;

defines an integer constant days_in_year which has the value 365. Later in
the program the identifier days_in_year can be used instead of the integer
365, making the program far more readable.

The general form of a constant declaration is:

const type constant-identifier = value ;

type is the type of the constant, constant-identifier is the identifier chosen
for the constant, which must be distinct from all identifiers for variables,
and value is an expression involving only constant quantities that gives the
constant its value. It is not possible to declare a constant without giving it
an initial value.

Another advantage of using constant declarations is illustrated by the
following declaration:

const float VatRate = 17.5;

This defines a constant VatRate to have the value 17.5, however if the Gov-
ernment later changes this rate then instead of having to search through the
program for every occurrence of the VAT rate all that needs to be done is

51

to change the value of the constant identifier VatRate at the one place in
the program. This of course only works if the constant identifier VatRate
has been used throughout the program and its numeric equivalent has never
been used.

Constant definitions are, by convention, usually placed before variable
declarations. There is no limit on how many constant declarations can be
used in a program. Several constant identifiers of the same type can be
declared in the same constant declaration by separating each declaration by
a comma. Thus

const int days_in_year = 365,
days_in_leap_year = 366;

Note that it is illegal in C++ to attempt to change the value of a constant.

6.4 General form of a C++ Program

At this stage the programs considered will fit into the following general
format:

// Introductory comments
// file name, programmer, when written or modified
// what program does

#include <iostream.h>

void main()
{

constant declarations
variable declarations
executable statements

}

Note that it makes complex programs much easier to interpret if, as
above, closing braces } are aligned with the corresponding opening brace {.
However other conventions are used for the layout of braces in textbooks
and other C++ programmers’ programs. Also additional spaces, new lines
etc. can also be used to make programs more readable. The important thing
is to adopt one of the standard conventions and stick to it consistently.

6.5 Input and Output

Input and output use the input stream cin and the output stream cout.
The input stream cin is usually associated with the keyboard and the output
stream cout is usually associated with the monitor.

52

The following statement waits for a number to be entered from the key-
board and assigns it to the variable number:

cin >> number;

The general form of a statement to perform input using the input stream
cin is:

cin input-list;

where input-list is a list of identifiers, each identifier preceded by the input
operator >>. Thus

cin >> n1 >> n2;

would take the next two values entered by the user and assign the value of
the first one to the variable n1 and the second to the variable n2.

The program must read a value for each variable in the input-list before
it executes any more statements. The order in which the values are entered
must correspond to the order of the variables in the input-list and they
must be of the same type as the corresponding variable. They should be
separated by spaces. Normally, the C++ system will not pass any values to
the variables in the input-list until a complete line of input has been read,
i.e. until the return or enter key has been pressed. If more values are
supplied than are required to give each variable in the input-list a value, the
unused values will be used for any subsequent input statements using cin.
For example given the following declarations and input statement:

int count, n;
float value;
cin >> count >> value >> n;

the user could enter

23 -65.1 3

to assign 23 to count, -65.1 to value and 3 to n. There is no indication in
the data of which value is to be associated with which variable; the order
of the data items must correspond to the order of the variables in the input
list. The data items on input should be separated by spaces or new lines.
Any number of these will be skipped over before or between data items.
Thus the input above could equally well have been entered as:

23
-65.1 3

The following statement outputs the current value of the variable count
to the output stream cout, which is usually associated with the monitor.
The value will be printed on the current line of output starting immediately
after any previous output.

53

cout << count;

The general form of a statement to perform output using the output stream
cout is:

cout output-list;

where output-list is a list of variables, constants, or character strings in
quotation marks, each preceded by the output operator <<. The output
operator displays the value of the item that follows it. The values are dis-
played in the order in which they appear in the output-list. A new line is
taken if the special end-of-line character endl is output. If an endl is not
output, the output line will either be chopped off at the right hand edge of
the screen or it may wrap round on to the next line. Do not rely on either
behaviour as different computer systems may do things differently. Thus

cout << "Hello there" << endl;

will print Hello there on the current output line and then take a new line
for the next output. The statements:

float length, breadth;
cout << "Enter the length and breadth: ";
cin >> length >> breadth;
cout << endl << "The length is " << length;
cout << endl << "The breadth is " << breadth << endl;

will display, if the user enters 6.51 and 3.24 at the prompt, the following
output:

The length is 6.51
The breadth is 3.24

Note that a value written to cout will be printed immediately after any
previous value with no space between. In the above program the character
strings written to cout each end with a space character. The statement

cout << length << breadth;

would print out the results as

6.513.24

which is obviously impossible to interpret correctly. If printing several values
on the same line remember to separate them with spaces by printing a string
in between them as follows:

cout << length << " " << breadth;

54

6.6 Programming Style

As was remarked in note 6.4 above, any number of spaces and or new lines
can be used to separate the different symbols in a C++ program. The
identifiers chosen for variables mean nothing to the compiler either, but
using identifiers which have some significance to the programmer is good
practice. The program below is identical to the original example in this
Lesson, except for its layout and the identifiers chosen. Which program
would you rather be given to modify?

#include <iostream.h>
void main(
) { int a,b,
c,d; cout << "Length = "; cin >> a; cout<<"Width = "
;cin >> b; c = 2*(a+

b); d = a*b; cout
<< endl << "Perimeter is " <<
c << endl << "Area is " << d

<< endl;}

6.7 Summary

• An international standard for the C++ language is soon to be pro-
duced. This will make programs written in standard obeying C++
capable of being transported from one computer to another.

• All C++ programs must include a function main().

• All executable statements in C++ are terminated by a semi-colon.

• Comments are ignored by the compiler but are there for the informa-
tion of someone reading the program. All characters between // and
the end of the line are ignored by the compiler.

• All variables and constants that are used in a C++ program must be
declared before use. Declaration associates a type and an identifier
with a variable.

• The type int is used for whole numbers which are represented exactly
within the computer.

• The type float is used for real (decimal) numbers. They are held to
a limited accuracy within the computer.

• The type char is used to represent single characters. A char constant
is enclosed in single quotation marks.

55

• Literal strings can be used in output statements and are represented
by enclosing the characters of the string in double quotation marks ".

• Variables names (identifiers) can only include letters of the alphabet,
digits and the underscore character. They must commence with a
letter.

• Variables take values from input when included in input statements
using cin >> variable-identifier.

• The value of a variable or constant can be output by including the
identifier in the output list cout << output-list. Items in the output
list are separated by <<.

6.8 Multiple Choice Questions

1. Which of the following are valid C++ identifiers?

(a) const

(b) y=z

(c) xyz123

(d) Bill

(e) ThisIsALongOne

(f) Sue’s

(g) two-way

(h) int

(i) so is this one

(j) amount

(k) 2ndclass

2. Values can be input to variables in the program using the stream

(a) cin

(b) cout

3. Comments in C++ are started with

(a) //

(b) {
(c) ;

56

6.9 Review questions

1. Write a constant declaration that declares constants to hold the num-
ber of days in a week and the number of weeks in a year. In a separate
constant statement declare a constant pi as 3.1415927.

2. Write declaration statements to declare integer variables i and j and
float variables x and y. Extend your declaration statements so that i
and j are both initialised to 1 and y is initialised to 10.0.

3. Write C++ instructions to ask a user to type in three numbers and to
read them into integer variables first, second and third.

4. Write C++ instructions to output the value of a variable x in a line
as follows:

The value of x is

5. Write C++ instructions to generate output as follows:

A circle of radius
has area

and circumference

where the values of the radius, the area and the circumference are held
in variables rad, area, and circum.

6. Correct the syntax errors in the following C++ program:

include iostream.h

Main();
{
Float x,y,z;
cout < "Enter two numbers ";
cin >> a >> b
cout << ’The numbers in reverse order are’

<< b,a;
}

syntax.cpp

7. Show the form of output displayed by the following statements when
total has the value 352.74.

cout << "The final total is: " << endl;
cout << "$" << total << endl;

8. What data types would you use to represent the following items?

57

(a) the number of students in a class

(b) the grade (a letter) attained by a student in the class

(c) the average mark in a class

(d) the distance between two points

(e) the population of a city

(f) the weight of a postage stamp

(g) the registration letter of a car

9. Write suitable declarations for variables in question 8. Be sure to
choose meaningful identifiers.

6.10 Exercises

1. Using literal character strings and cout print out a large letter E as
below:

XXXXX
X
X
XXX
X
X
XXXXX

2. Write a program to read in four characters and to print them out, each
one on a separate line, enclosed in single quotation marks.

3. Write a program which prompts the user to enter two integer values
and a float value and then prints out the three numbers that are en-
tered with a suitable message.

58

Lesson 7

The Assignment statement

The main statement in C++ for carrying out computation and assigning val-
ues to variables is the assignment statement. For example the following
assignment statement:

average = (a + b)/2;

assigns half the sum of a and b to the variable average. The general form
of an assignment statement is:

result = expression ;

The expression is evaluated and then the value is assigned to the variable
result. It is important to note that the value assigned to result must be of
the same type as result.

The expression can be a single variable, a single constant or involve
variables and constants combined by the arithmetic operators listed below.
Rounded brackets () may also be used in matched pairs in expressions to
indicate the order of evaluation.

+ addition
- subtraction
* multiplication
/ division
% remainder after division (modulus)

For example

i = 3;
sum = 0.0;
perimeter = 2.0 * (length + breadth);
ratio = (a + b)/(c + d);

The type of the operands of an arithmetic operator is important. The
following rules apply:

59

• if both operands are of type int then the result is of type int.

• if either operand, or both, are of type float then the result is of type
float.

• if the expression evaluates to type int and the result variable is of type
float then the int will be converted to an equivalent float before
assignment to the result variable.

• if the expression evaluates to type float and the result variable is
of type int then the float will be converted to an int, usually by
rounding towards zero, before assignment to the result variable.

The last rule means that it is quite easy to lose accuracy in an assignment
statement. As already noted the type of the value assigned must be the same
type as the variable to which it is assigned. Hence in the following example
in which i is a variable of type int

i = 3.5;

the compiler will insert code to convert the value 3.5 to an integer before
carrying out the assignment. Hence the value 3 will be assigned to the
variable i. The compiler will normally truncate float values to the integer
value which is nearer to zero. Rounding to the nearest integer is not carried
out.

A similar problem arises with the division operator. Consider the fol-
lowing rule:

• the result of a division operator between two int operands is of type
int. It gives the result truncated towards zero if the result is posi-
tive, the language does not define what should happen if the result is
negative, so beware! This of course means that it is very easy to lose
accuracy if great care is not taken when using division with integer
variables.

For example the statement

i = 1/7;

will assign the value zero to the integer variable i. Note that if the quotient
of two integers is assigned to a float then the same loss of accuracy still
occurs. Even if i in the above assignment was a variable of type float
1/7 would still be evaluated as an integer divided by an integer giving zero,
which would then be converted to the equivalent float value, i.e. 0.0, before
being assigned to the float variable i.

The modulus operator % between two positive integer variables gives the
remainder when the first is divided by the second. Thus 34 % 10 gives 4 as

60

the result. However if either operand is negative then there are ambiguities
since it is not well-defined in C++ what should happen in this case. For
example 10 % -7 could be interpreted as 3 or -4. Hence it is best to avoid
this situation. All that C++ guarantees is that

i % j = i - (i / j) * j

7.1 Priority of Operators

Another problem associated with evaluating expressions is that of order of
evaluation. Should

a + b * c

be evaluated by performing the multiplication first, or by performing the
addition first? i.e. as

(a + b) * c or as a + (b * c) ?

C++ solves this problem by assigning priorities to operators, operators
with high priority are then evaluated before operators with low priority. Op-
erators with equal priority are evaluated in left to right order. The priorities
of the operators seen so far are, in high to low priority order:

()
* / %
+ -
=

Thus

a + b * c

is evaluated as if it had been written as

a + (b * c)

because the * has a higher priority than the +. If the + was to be evaluated
first then brackets would need to be used as follows:

(a + b) * c

If in any doubt use extra brackets to ensure the correct order of evalua-
tion.

It is also important to note that two arithmetic operators cannot be
written in succession, use brackets to avoid this happening.

61

7.2 Examples of Arithmetic Expressions

The following examples illustrate how some more complex mathematical
expressions can be written in C++.

Mathematical C++ Equivalent
a + b

c + d
(a+b)/(c+d)

a

bc
a/(b*c)

ka(t1 − t2)
b

k*a*(t1-t2)/b

7.3 Type Conversions

The rules stated above mean that division of integers will always give an
integer result. If the correct float result is required, then the compiler must
be forced to generate code that evaluates the expression as a float. If either
of the operands is a constant, then it can be expressed as a floating point
constant by appending a .0 to it, as we have seen. Thus assuming that n is
an int variable, 1/n does not give the correct reciprocal of n except in the
situation n=1. To force the expression to be evaluated as a floating point
expression, use 1.0/n.

This solves the problem when one of the operands is a constant, but to
force an expression involving two int variables to be evaluated as a float
expression, at least one of the variables must be converted to float. This
can be done by using the cast operation:

f = float(i)/float(n);

The type float is used as an operator to give a floating point representation
of the variable or expression in brackets. Notice that f = float(i/n); will
still evaluate the expression as an int and only convert it to float after the
integer division has been performed.

Other types can be used to cast values too. int(x) will return the
value of x expressed as an int. Similarly, char(y) will return the character
corresponding to the value y in the ASCII character set.

7.4 Example Program: Temperature Conversion

The following program converts an input value in degrees Fahrenheit to the
corresponding value in degrees Centigrade. Note how the constant mult
has been defined using an expression. A constant can be defined using an
expression as long as the operands in the expression are numeric constants

62

or the names of constants already defined. Also note that the constant has
been given the value 5.0/9.0, if it had been defined by 5/9 then this would
have evaluated to zero (an integer divided by an integer) which is not the
intention.

// Convert Fahrenheit to Centigrade
// Enters a Fahrenheit value from the user,
// converts it to centigrade and outputs
// the result.

#include <iostream.h>

void main()
{

const float mult = 5.0/9.0; // 5/9 returns zero
// integer division

const int sub = 32;
float fahr, cent;
cout << "Enter Fahrenheit temperature: ";
cin >> fahr;
cent = (fahr - sub) * mult;
cout << "Centigrade equivalent of " << fahr

<< " is " << cent << endl;
}

ftoc.cpp

7.5 Example Program: Pence to Pounds and Pence

The following program converts an input value in pence to the equivalent
value in pounds and pence. Note how integer division has been used to find
the whole number of pounds in the value of pence by dividing pence by 100.
Also how the % operator has been used to find the remainder when pence is
divided by 100 to produce the number of pence left over.

// Convert a sum of money in pence into the equivalent
// sum in pounds and pence.

#include <iostream.h>

void main()
{

int pence, pounds;
cout << "Enter the amount in pence: ";

63

cin >> pence;
cout << pence << " pence is ";
pounds = pence / 100; // note use of integer division
pence = pence % 100; // modulus operator -> remainder
cout << pounds << " pounds and "

<< pence << " pence" << endl;
}

ptolp.cpp

7.6 Summary

• Expressions are combinations of operands and operators.

• The order of evaluation of an expression is determined by the prece-
dence of the operators.

• In an assignment statement, the expression on the right hand side of
the assignment is evaluated and, if necessary, converted to the type of
the variable on the left hand side before the assignment takes place.

• When float expressions are assigned to int variables there may be
loss of accuracy.

7.7 Multiple Choice Questions

1. Evaluate 4+5*3

(a) 19

(b) 27

2. Evaluate 7*3+2

(a) 23

(b) 35

3. Evaluate (4+2)*3

(a) 18

(b) 10

4. Evaluate 17/3

(a) 5

64

(b) 6

5. Evaluate 17%3

(a) 0

(b) 1

(c) 2

(d) 3

6. Evaluate 1/2

(a) 0

(b) 1

7. Evaluate 2*8/2*4

(a) 32

(b) 2

7.8 Review questions

1. Write C++ expressions for the following mathematical formulae:

b2 − 4ac
a2 + 1

bc

1
1 + x2

a ∗ −(b + c)

2. Write C++ statements to change an integer number of centimetres
into the equivalent in kilometres, metres and centimetres. For exam-
ple 164375 centimetres is 1 kilometre, 643 metres and 75 centimetres.
Include declarations of suitable variables.

3. To what do the following expressions evaluate?

17/3 17%3 1/2 1/2*(x+y)

4. Given the declarations:

float x;
int k, i = 5, j = 2;

To what would the variables x and k be set as a result of the assign-
ments

• k = i/j;

• x = i/j;

• k = i%j;

• x = 5.0/j;

65

7.9 Exercises

1. Write a C++ program which reads values for two floats and outputs
their sum, product and quotient. Include a sensible input prompt and
informative output.

2. Write a program to evaluate the fuel consumption of a car. The
mileage at the start and end of the journey should be read, and also
the fuel level in the tank at the start and end of the journey. Calculate
fuel used, miles travelled, and hence the overall fuel consumption in
miles travelled per gallon of fuel.

3. In many countries using the metric system, car fuel consumptions are
measured in litres of fuel required to travel 100 kilometres. Modify
your solution to question 2 so that the output now specifies the dis-
tance travelled in kilometres as well as in miles, and the fuel consumed
in litres as well as in gallons, and the consumption in litres per 100
kilometres as well as in miles per gallon. Use const for the conversion
factors between miles and kilometres, and gallons and litres.

4. Write a program to convert currency from pounds sterling to deutsch
marks. Read the quantity of money in pounds and pence, and output
the resulting foreign currency in marks and pfennigs. (There are 100
pfennigs in a mark). Use a const to represent the conversion rate,
which is 2.31DM to £1 at the time of writing. Be sure to print suitable
headings and or labels for the values to be output.

5. Modify your answer to question 4 so that a commission of £2 is
charged.

6. A customer’s gas bill is calculated by adding a standard charge of 9.02
pence per day to the charge for gas, calculated as 1.433 pence per cubic
metre. The whole bill is then liable for VAT at 8%. Write a program
that reads the number of days, and the initial and final meter readings,
and calculates and prints the bill. Use const for the various rates of
charging.

7. If three integers a, b and c are such that a2 + b2 = c2 then they consti-
tute a Pythagorean triple. There is an infinite number of such triples.
One way of generating them is as follows:
Consider two integers m, and n, such that m > n then the three num-
bers m2 − n2, 2mn and m2 + n2 are a Pythagorean triple. Write a
C++ program that reads values for m and n and prints the values of
the corresponding Pythagorean triple.

66

Lesson 8

Further Assignment
Statements & Control of
Output

8.1 Increment and Decrement Operators

There are some operations that occur so frequently in writing assignment
statements that C++ has shorthand methods for writing them.

One common situation is that of incrementing or decrementing an integer
variable. For example:

n = n + 1;
n = n - 1;

C++ has an increment operator ++ and a decrement operator --.
Thus

n++; can be used instead of n = n + 1;
n--; can be used instead of n = n - 1;

The ++ and -- operators here have been written after the variable they
apply to, in which case they are called the postincrement and postdecre-
ment operators. There are also identical preincrement and predecre-
ment operators which are written before the variable to which they apply.
Thus

++n; can be used instead of n = n + 1;
--n; can be used instead of n = n - 1;

Both the pre- and post- versions of these operators appear to be the
same from the above, and in fact it does not matter whether n++ or ++n
is used if all that is required is to increment the variable n. However both

67

versions of the increment and decrement operators have a side effect which
means that they are not equivalent in all cases. These operators as well as
incrementing or decrementing the variable also return a value. Thus it is
possible to write

i = n++;

What value does i take? Should it take the old value of n before it is
incremented or the new value after it is incremented? The rule is that a
postincrement or postdecrement operator delivers the old value of the vari-
able before incrementing or decrementing the variable. A preincrement or
predecrement operator carries out the incrementation first and then delivers
the new value. For example if n has the value 5 then

i = n++;

would set i to the original value of n i.e. 5 and would then increment n to 6.
Whereas

i = ++n;

would increment n to 6 and then set i to 6.
For the moment this notation will only be used as a shorthand method

of incrementing or decrementing a variable.

8.2 Specialised Assignment Statements

Another common situation that occurs is assignments such as the follows:

sum = sum + x;

in which a variable is increased by some amount and the result assigned
back to the original variable. This type of assignment can be represented in
C++ by:

sum += x;

This notation can be used with the arithmetic operators +, -, *, / and
%. The general form of such compound assignment operators is:

variable op= expression

which is interpreted as being equivalent to:

variable = variable op (expression)

the expression is shown in brackets to indicate that the expression is evalu-
ated first before applying the operator op. The following example illustrate
the use of compound assignment operators.

68

total += value; or total = total + value;
prod *= 10; or prod = prod * 10;
x /= y + 1; or x = x/(y + 1);
n %= 2; or n = n % 2;

Except for the case of the compound modulus operator %= the two
operands may be any arithmetic type. The compound modulus operator
requires that both operands are integer types.

8.3 Formatting of output

When considering output in 6.5 no consideration was given to the format of
the output produced. It was assumed that all output would be formatted
using the default settings. The default settings print integers using as many
characters as are required and real values are printed with up to six decimal
digits (some compilers give six digits after the decimal point).

Consider the following portion of C++. This portion uses a construct
not covered yet, namely, a for statement. The for statement is used for
implementing loops and will be covered later. The statement starting with
for has the effect of executing the statements between the braces {} as i
takes the values 1, 2, 3 and 4.

for (i=1; i<5; i++)
{
cout << "Enter an integer value: ";
cin >> x;
cout << x << " " << sqrt(x) << endl;
}

then output as follows might be produced:

1 1
5 2.23607
1678 40.9634
36 6

This is very untidy and difficult to read, it would be preferable if it could
appear as follows:

1 1.00000
5 2.23607

1678 40.96340
36 6.00000

with the least significant digits of the integers aligned and the decimal points
in the real numbers aligned. It is possible to achieve this degree of control
on the output format by using output manipulators.

69

Before looking at manipulators scientific notation for the display of
floating point numbers is considered. Scientific notation allows very large
or very small numbers to be written in a more convenient form. Thus a
number like 67453000000000000 is better written as 6.7453× 1016 and a
number like 0.0000000000001245 is better written as 1.245× 10−13. C++
allows this type of notation by replacing the ‘ten to the power of’ by e or E.
Thus the above numbers could be written in C++ as 6.7453e16 and 1.245e-
13. These forms can be used in writing constants in C++ and in input and
output. On output, if a number is too large to display in six digits then
scientific notation will be used by default. For example 12345678.34 might
be output as 1.23457e+07.

The first manipulator considered is setiosflags, this allows the output
of floating point numbers to be

fixed fixed format i.e. no scientific notation

scientific scientific notation

showpoint displays decimal point and trailing zeros
The flags that are to be set are specified in the setiosflags manipulator

as follows:

setiosflags(ios::flagname)

If more than one flag is to be set then another ios::flagname can be in-
cluded, separated by a | from the other setting in the above call. Thus the
following output statement would set fixed format with the decimal point
displayed:

cout << setiosflags(ios::fixed | ios::showpoint);

This would ensure that a number like 1.0 would be displayed as 1.0 rather
than as 1. These flags remain in effect until explicitly changed.

Another useful manipulator is the setprecision manipulator, this takes
one parameter which indicates the number of decimal places of accuracy
to be printed. This accuracy remains in effect until it is reset. The
setprecision manipulator may be used when none of the iosflags have
been set. However there is some confusion over what constitutes precision,
some compilers will produce n digits in total and others n digits after the
point when setprecision(n) is used on its own. However if it is used after
the flags fixed or scientific have been set it will produce n digits after
the decimal point.

For the moment the most suitable setting of the iosflags for output are
fixed and showpoint.

The following portion of C++

70

float x, y;
x = 12.2345,
y = 1.0;
cout << setiosflags(ios::fixed | ios::showpoint)

<< setprecision(2);
cout << x << endl

<< y << endl;

would output

12.23
1.00

that is, in fixed format with two places after the point and the point dis-
played. Without the ios flag set to showpoint y would have been printed
as 1. If the decimal points have to be aligned then the field width has to be
set. This is done using the setw manipulator which takes a single parameter
which indicates the width of field in which the output value is to be placed.
The value is placed right-justified in the field. The field width remains in
effect only for the next data item displayed. Thus if the lines:

cout << setw(7) << x << endl
<< setw(7) << y << endl;

were added to the above portion of code the output would be:

12.23
1.00

12.23
1.00

Note 1: The file iomanip.h must be included if the above manipulators are
to be used. There are many more facilities available by using input/output
manipulators but the above is enough to allow the writing of programs that
produce sensible formatting of output in most cases.

Note 2: The output width is reset to the default after every variable
is output, so that it was necessary to use setw(7) twice, once before each
variable that was output.

8.4 Example Program: Tabulation of sin function

The following example program tabulates values of the sin function, using
manipulators to align the output neatly in columns. The for statement,
which will be covered in Lesson 18, repeats the statements after it. In this
case, i takes values 0, 1, 2, . . . 16.

71

// IEA Oct 1995
// Outputs a table of x and sin(x)
// Uses manipulators for output

#include <iostream.h>
#include <math.h>
#include <iomanip.h>

void main()
{
float x;
int i;
cout << setiosflags(ios::fixed | ios::showpoint);
for (i = 0; i <= 16; i++)
{
x = 0.1 * i;
cout << setprecision(1) << setw(4) << x;
cout << setprecision(6) << setw(10) << sin(x) << endl;

}
}

sin 1.cpp

produces nicely aligned tabular output as follows:

0.0 0.000000
0.1 0.099833
0.2 0.198669
0.3 0.295520
.
.
.
1.5 0.997495
1.6 0.999574

Note how the iosflags were set at the beginning but that the precision
and width were set individually in the cout stream output as required.

8.5 Summary

• The unary increment and decrement operators are applied to integer
variables to increase or decrease the value by 1.

• If the increment (or decrement) operator is placed after the variable,
the operation takes place after the value has been returned.

72

• If the increment (or decrement) operator is placed before the variable,
the operation takes place before the value is returned.

• The operators +, -, *, /, and % can all be used in the form

variable op = expression

which is identical in operation to

variable = variable op (expression)

• I/O manipulators can be used to control the format of output. The
file iomanip.h must be included in the program if they are to be used.

8.6 Multiple Choice Questions

1. Consider the following section of C++ program, in which i and n are
int variables

n = 7;
i = 4;
i = n++;

What are the values of i and n?

(a) i=7 n=8

(b) i=7 n=7

(c) i=8 n=8

(d) i=4 n=7

2. Consider the following section of C++ program, in which i and n are
int variables

n = 5;
i = 9;
i = --n;

What are the values of i and n?

(a) i=9 n=5

(b) i=4 n=4

(c) i=4 n=5

(d) i=5 n=4

73

8.7 Exercises

1. Alter the program you wrote for exercise 2 in Lesson 7 so that the
printed values for mileage and tank contents have two digits printed
after the decimal point and the consumption in miles per gallon is
printed with one digit after the decimal point.

2. Amend your program for exercise 6 in Lesson 7 so that the output
appears in a format as follows:

Standing charge 9.02 pence for 61 days 5.50
Gas consumption 1632.1 cu.m @ 1.433 pence 23.39
Sub-total 28.89

VAT at 8% 2.31

Total 31.20

Note that allowance has been made for future increases in the standing
charge to more than 10 pence per day, and for the number of days to
be anything up to 999. You may wish to consider suitable limits on the
amount of gas consumed, in order that the format of you final output
is not disrupted.

74

Lesson 9

Introduction to structured
design

9.1 Conditional Control Structures

In Section 5.2 it was shown that algorithms can be described using a few con-
cepts, namely, sequence, conditional execution (or selection) and repetition.
The idea of assignment was also used.

In designing programs it is best to proceed with algorithm/program de-
sign in a top-down structured manner, that is by first recognising the
major components of the solution, then expressing the solution as a sequence
of these major components and then expanding the major components them-
selves similarly. These ideas have already been illustrated in Lesson 5. They
are further expanded below.

Consider the example C++ program that computes the area and perime-
ter of a rectangle (see Lesson 6) when the length and width are entered by a
user. A possible initial algorithm is as follows, where each step is numbered:

1. Enter the length and width of the rectangle.

2. Calculate the area and perimeter of the rectangle.

3. Output the area and the perimeter.

Notice that the idea of sequence has been used here, that is that the
operations are carried out in the order they are written. This is the simplest
way of structuring the solution to a problem. Each step in the above is now
expanded as follows:

1. Enter
1.1 Prompt user to enter length
1.2 Enter length
1.3 Prompt user to enter width

75

1.4 Enter width

2. Calculate
2.1 Calculate perimeter as twice sum

of length and width
2.2 Calculate area as product of length and width

3. Output
3.1 Output perimeter
3.2 Output area

At this stage the problem has now been completely solved independent
of the language the program is to be written in. It is now simple to write
the program in any suitable programming language. In fact in Lesson 6 this
program was given as an example and Lesson 7 covered enough C++ to
allow this program to be written in C++.

Unfortunately not all problems are so simple to solve. Frequently the
simple idea of sequence used above is insufficient to describe the solution of
many problems.
Consider the following problem:

Write a program which enters the number of hours worked in a
week and an hourly rate of pay of an employee. The program
should output the wage of the employee. The employee is paid at
the normal hourly rate for the first forty hours and subsequently
at one and a half times the hourly rate.

The problem solution now appears fairly straightforward and modelling
it on the previous case an algorithm is written as follows:

1. Enter the hours worked and the hourly rate.

2. Calculate the wage.

3. Output the wage.

However in attempting to expand step 2, the simple idea of sequence is
not sufficient. This is because if the number of hours worked is less than or
equal to forty then the final wage is the number of hours multiplied by the
hourly rate whereas if more than forty hours are worked then it is the hourly
rate for the first forty hours and one and a half times the hourly rate for
the remaining hours. Thus the truth of a condition ‘number of hours less
than or equal to forty’ determines which calculation should be carried out.
Such a conditional statement has already been encountered in Lesson 5.
There it was introduced as being a statement which tests a condition and
depending on the result of the test carries out one operation or another.

76

Thus using a conditional statement the algorithmic solution above could be
expanded as follows:

1. Enter
1.1 Prompt user for hours worked.
1.2 Enter hours worked.
1.3 Prompt user for hourly rate.
1.4 Enter hourly rate.

2. Calculate wage
2.1 If hours worked is less than or equal to forty

then
2.1.1 calculate normal wage.

otherwise
2.1.2 calculate over hours wage.

3. Output the wage

The details of working out the wage are not important here, what is
important is that in describing the solution a conditional statement was
used. Conditional statements are often characterised by the words

if condition then A else B

which carries out the process A if the condition evaluates to true and other-
wise carries out the process B. All programming languages have some form
of conditional statement. The conditional statements available in C++ are
considered in the following few lessons.

9.2 Summary

• The solution of a problem is usually best approached in a top-down
manner. Sub problems are identified and solutions are developed in
turn for each sub problem.

• A condition is a statement which can be either false or true.

• Conditional statements carry out one operation or another depending
on the truth value of a condition.

9.3 Review Questions

9.4 Exercises

1. In question 6 of Lesson 7 you wrote a program to process a gas bill. If
you haven’t already done so write down an algorithm for this program.

77

Now extend the algorithm so that the option of paying the bill by
installments is given. Thus as well as entering the numeric data the
user answers a question as to whether they wish to pay the bill in
full or by installments. If paid in installments then a five percent
interest charge is added to the total bill before VAT is charged. An
initial twenty percent must be paid initially and the remainder is paid
in three equal monthly installments. The output should indicate the
initial payment and monthly installment.

2. A program is required as part of an invoicing system to enter the
reference number of a product, its unit price in pounds and pence and
a quantity ordered. The program should output the total cost of the
order given that the first 100 items ordered are charged at the unit
price and that the remainder are charged at 75% of unit price. Write
an algorithm for this program.

78

Lesson 10

Conditions

10.1 Relational Expressions

A condition or logical expression is an expression that can only take the
values true or false. A simple form of logical expression is the relational
expression. The following is an example of a relational expression:

x < y

which takes the value true if the value of the variable x is less than the
value of the variable y.

The general form of a relational expression is:

operand1 relational-operator operand2

The operands can be either variables, constants or expressions. If an
operand is an expression then the expression is evaluated and its value used
as the operand. The relational-operators allowable in C++ are:

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equals
!= not equals

Note that equality is tested for using the operator == since = is already used
for assigning values to variables.

The condition is true if the values of the two operands satisfy the rela-
tional operator, and false otherwise.

10.2 Examples using Relational Operators

i < 10
total <= 1000.0

79

count != n
discriminant < 0.0
x * x + y * y < r*r

Obviously, depending on the values of the variables involved, each of the
above relational expressions is true or false. For example if x has the value
3, y is 6, and r is 10, the last expression above evaluates to true, whereas
if x was 7 and y was 8 then it would evaluate to false.

The value of a logical expression can be stored in a bool variable for later
use. Any numerical expression can be used for the value of a condition, with
0 being interpreted as false and any non zero value as true.

This means that the value returned by a relational expression could be
used in arithmetic. This is often done by programmers but it is a practice
not to be recommended. It leads to a program that is difficult to understand.

10.3 Logical Expressions

It is possible to specify more complex conditions than those which can be
written using only the relational operators described above. Since the value
of a condition has a numerical interpretation it could be operated on by
the usual arithmetic operators, this is not to be recommended. There are
explicit logical operators for combining the logical values true and false.

The simplest logical operator is not which is represented in C++ by !.
It operates on a single operand, and returns false if its operand is true and
true if its operand is false.

The operator and, represented by &&, takes two operands and is true
only if both of the operands are true. If either operand is false, the resulting
value is false.

or is the final logical operator and is represented by ||. It results in true
if either of its operands is true. It returns false only if both its operands
are false.

The logical operators can be defined by truth tables as follows. Note
that F is used for false and T is used for true in these tables.

not !
A !A
F T
T F

and &&
A B A && B
F F F
F T F
T F F
T T T

or ||
A B A || B
F F F
F T T
T F T
T T T

These tables show that not reverses the truth value of the operand, that
the and of two operands is only true if both operands are true and that the
or of two operands is true if either or both of its operands are true. Using
these logical operators more complex conditions can now be written.

80

If i has the value 15, and j has the value 10, then the expression
(i > 10) && (j > 0) is evaluated by evaluating the relation i > 10 (which
is true), then evaluating the relation j > 0 (which is also true), to give
true. If j has the value −1 then the second relation would be false, so the
overall expression would be false. If i has the value 5, then the first relation
would be false and the expression will be false irrespective of the value of
the second relation. C++ does not even evaluate the second relation in this
situation. Similarly, if the first relation is true in an or (||) expression then
the second relation will not be evaluated. This short-circuit evaluation
enables many logical expressions to be efficiently evaluated.

10.4 Examples using logical operators

(i < 10) && (j > 0)
((x + y) <= 15) || (i == 5)
!((i >= 10) || (j <= 0))
(i < 10) && 0

Note that in the last example an actual truth value (0 - false) was
used as one of the operands of &&, this means that whatever the value of i
this logical expression evaluates to false (Why?). In these examples brackets
have been used to make the order of application of operators clear. However,
in the main, they are not strictly necessary if the precedence rules already
considered for arithmetic operators are extended to include relational and
logical operators. The consequent extended Operator Precedence Table
for C++ is:

highest - evaluate first

() brackets
! + - logical not, unary plus, unary minus
* / % multiply, divide, modulus
+ - add, subtract
< <= > >= less than, less than or equal,

greater than, greater than or equal
== != equal, not equal
&& logical and
|| logical or
= assignment

lowest - evaluate last

Be careful not to confuse the assignment operator = with the logical equality
operator ==.

Using this table with the following expression

81

x + y < 10 && x/y == 3 || z != 10

shows that the operators are evaluated in the order /, +, <, ==, !=, && and
||. This is equivalent to bracketting the expression as follows:

((((x + y) < 10) && ((x/y) == 3)) || (z != 10))

Similarly the expressions written in bracketted form above could be writ-
ten without brackets as:

i < 10 && j > 0
x + y <= 15 || i == 5
!(i >= 10 || j <= 0)
i < 10 && 0

Now that logical expressions (or conditions) in C++ have been covered
it is possible to move on and look at the conditional control structures in
C++.

10.5 Summary

• A condition or logical expression is an expression that can only take
the values false or true.

• A relational expression is constructed from arithmetic expressions com-
bined by the relational operators less than, greater than, equal, not
equal, greater than or equal and less than or equal.

• A logical expression is constructed from relational expressions by use
of the logical operators not, and and or.

• C++ evaluates only as many operands as necessary to find the value
of a logical expression involving and or or.

10.6 Multiple Choice Questions

1. What values can a relational expression take?

(a) true and false

(b) Any numerical value

2. What values does C++ use to represent true and false?

(a) 1 and 0

(b) Any numerical value

82

3. If a is 5, b is 10, c is 15 and d is 0 what are the truth values of the
following expressions?

(a) c == a+b

(b) a != 7

(c) b <=a

(d) a > 5

(e) a+d >= c-b

(f) d/a < c*b

4. If a is 5, b is 10, c is 15 and d is 0 what are the truth values of the
following expressions?

(a) c == a+b || c == d

(b) a != 7 && c >= 6 || a+c <= 20

(c) !(b <= 12) && a % 2 == 0

(d) !(a >5) || c < a+b

10.7 Review Questions

1. What are the relational operators?

2. Write a relational expression which would evaluate to true if the sum
of variables x and y was equal to the value of a variable z.

3. Bracket the following logical expressions to show the order of evalua-
tion of the operators. Hence if a is 5, b is 10, c is 15 and d is 0 what
are the truth values of the expressions?

c == a+b
a != 7
b <= a
a > 5
a+d >= c-b
d/a < c*b

4. Bracket the following logical expressions to show the order of evalua-
tion of the operators. Hence if a is 5, b is 10, c is 15 and d is 0 what
are the truth values of the expressions?

c == a+b || c == d
a != 7 && c >= 6 || a+c <= 20
!(b <= 12) && a % 2 == 0
!(a >5) || c < a+b

83

5. Write a logical expression which returns true if a float variable x lies
between -10.0 and 10.0.

84

Lesson 11

The if statement

As remarked in section 5.2, in order to produce algorithms, it must be pos-
sible to select the next statement to execute on the basis of some condition.
Simple conditions have been covered in Lesson 10. The if statement is the
simplest form of conditional or selection statement in C++. The following
if statement

if (x > 0.0)
cout << "The value of x is positive";

will print out the message ‘ The value of x is positive’ if x is positive.
The general form of the if statement is:

if (condition)
statement

where condition is any valid logical expression as described in Lesson 10.1
or a bool variable. The statement can be a single C++ statement of any
kind and must be terminated by a semi-colon. It can also be a compound
statement, which is a sequence of statements enclosed in left and right braces
and acts as a single statement. The closing right brace is not followed by a
semi-colon.

11.1 Examples of if statements

The following if statement adds x to a variable sum if x is positive:

if (x > 0.0)
sum += x;

The following if statement also adds x to sum but in addition it adds 1
to a count of positive numbers held in the variable poscount:

85

if (x >= 0.0)
{

sum += x;
poscount++;

}

Note the use of the addition/assignment operator, and of the increment
operator. Note how in the second example a compound statement has been
used to carry out more than one operation if the condition is true. If this
had been written as follows:

if (x >= 0.0)
sum += x;
poscount++;

then if x was greater than zero the next statement would be executed, that
is x would be added to sum. However the statement incrementing poscount
would then be treated as the next statement in the program, and not as
part of the if statement. The effect of this would be that poscount would
be incremented every time, whether x was positive or negative.

The statements within a compound statement can be any C++ state-
ments. In particular, another if statement could be included. For example,
to print a message if a quantity is negative, and a further message if no
overdraft has been arranged:

if (account_balance < 0)
{

cout << "Your account is overdrawn. Balance "
<< account_balance << endl;

if (overdraft_limit == 0)
cout << "You have exceeded your limit. << endl;

}

In this case, the same effect could have been achieved using two if
statements, and a more complex set of conditions:

if (account_balance < 0)
cout << "Your account is overdrawn. Balance "

<< account_balance << endl;
if (account_balance < 0 && overdraft_limit == 0)

cout << "You have exceeded your limit. << endl;

11.2 Summary

• An if statement is used to execute a statement only if a condition is
true.

86

• Compound statements executed because an if condition is true can
contain any other C++ statement, including other if statements.

11.3 Multiple Choice Questions

1. If y has the value 5 what will be the value of the variable y after the
following piece of C++ is executed?

if (y > 0)
y += 2;

(a) 5

(b) 7

(c) 2

2. If p has the value 3 and max has the value 5, what will be the value of
the variable max after the following piece of C++ is executed?

if (p > max)
max = p;

(a) 5

(b) 3

3. If x has the value 5.0 what will be the value of the variable countneg
after the following piece of C++ is executed?

countneg = 0;
if (x < 0.0)

negsum = negsum + x;
countneg = countneg + 1;

(a) 0

(b) 1

(c) 5

4. If this is changed as follows what would be the value of countneg after
execution of the code?

countneg = 0;
if (x < 0.0)

{
negsum = negsum + x;
countneg = countneg + 1;
}

87

(a) 0

(b) 1

(c) 5

11.4 Exercises

In each of these exercises produce an algorithmic description before proceed-
ing to write the program.

1. Modify your solution to question 2 from Lesson 7 so that the message

Trip too short for accurate results

is printed if the mileage used to calculate the fuel consumption is less
than 100 miles.

2. Write a C++ program which when two integers x and y are input will
output the absolute difference of the two integers. That is whichever
one of (x-y) or (y-x) is positive. Think of all the cases that can arise
and consequently plan a set of test data to confirm the correctness of
your program.

3. Percentage marks attained by a student in three exams are to be en-
tered to a computer. An indication of Pass or Fail is given out after
the three marks are entered. The criteria for passing are as follows:

A student passes if all three examinations are passed. Additionally a
student may pass if only one subject is failed and the overall average
is greater than or equal to 50. The pass mark for an individual subject
is 40.

Write a C++ program to implement this task.

88

Lesson 12

The if-else Statement

A simple if statement only allows selection of a statement (simple or com-
pound) when a condition holds. If there are alternative statements, some
which need to be executed when the condition holds, and some which are
to be executed when the condition does not hold. This can be done with
simple if statements as follows:

if (disc >= 0.0)
cout << "Roots are real";

if (disc < 0.0)
cout << "Roots are complex";

This technique will work so long as the statements which are executed as
a result of the first if statement do not alter the conditions under which
the second if statement will be executed. C++ provides a direct means of
expressing this selection. The if-else statement specifies statements to be
executed for both possible logical values of the condition in an if statement.

The following example of an if-else statement writes out one message
if the variable disc is positive and another message if disc is negative:

if (disc >= 0.0)
cout << "Roots are real";

else
cout << "Roots are complex";

The general form of the if-else statement is:

if (condition)
statementT

else
statementF

If the condition is true then statementT is executed, otherwise state-
mentF is executed. Both statementF and statementT may be single state-
ments or compound statements. Single statements must be terminated with
a semi-colon.

89

12.1 Examples of if-else statements

The following if-else statement adds x to a sum of positive numbers and
increments a count of positive numbers if it is positive. Similarly if x is
negative it is added to a sum of negative numbers and a count of negative
numbers is incremented.

if (x >= 0.0)
{

sumpos += x;
poscount++;

}
else

{
sumneg += x;
negcount++;

}

12.2 Example Program: Wages Calculation

In Lesson 5 an algorithm was developed to calculate wages depending on
hours worked and on whether any overtime had been worked. This can now
be written in C++. The program is listed below:

// IEA 1996
// Program to evaluate a wage

#include <iostream.h>

void main()
{

const float limit = 40.0,
overtime_factor = 1.5;

float hourly_rate, // hourly rate of pay
hours_worked, // hours worked
wage; // final wage

// Enter hours worked and hourly rate
cout << "Enter hours worked: ";
cin >> hours_worked;
cout << "Enter hourly_rate: ";
cin >> hourly_rate;

// calculate wage
if (hours_worked <= limit)

wage = hours_worked * hourly_rate;

90

else
wage = (limit + (hours_worked - limit) * overtime_factor)

* hourly_rate;
// Output wage

cout << "Wage for " << hours_worked
<< " hours at " << hourly_rate
<< " is " << wage
<< endl;

}

wages.cpp

Note that this program contains the minimal amount of comment that a
program should contain. Comments have been used to:

• indicate who wrote the program, when it was written and what it does.

• describe the main steps of the computation.

• indicate what the program variables represent.

Also note how constants have been used for the number of hours at
which the overtime weighting factor applies and the weighting factor itself.
Hence if subsequent negotiations change these quantities the program is
easily changed.

12.3 Example Program: Pythagorean Triples

In exercise 7 of Lesson 7 it was required to write a program to input two
integer values m and n, where m > n and to output the corresponding
Pythagorean triple m2 − n2, 2mn and m2 + n2. This is now extended so
that the values of m and n entered by the user are validated to ensure that
m is greater than n. A suitable algorithmic description is:

enter values for m and n.
if m is greater than m

then
{
calculate the pythagorean numbers

from m and n.
output the pythagorean numbers.
}

otherwise output a warning message.

This algorithmic description is now easily converted into the following
C++ program:

91

// IEA 1996
// Program to produce pythagorean triples
// with input validation.

#include <iostream.h>

void main()
{

int m, n; // entered by user to generate triple
int t1, t2, t3; // The values of the triple

// input from user
cout << "Input values for m and n, m > n : ";
cin >> m >> n;

// now validate m and n
if (m > n)

{
t1 = m*m-n*n;
t2 = 2*m*n;
t3 = m*m+n*n;
cout << "The triple corresponding to "

<< m << " and " << n << " is "
<< t1 << " " << t2 << " " << t3
<< endl;

}
else

cout << "m must be greater than n!"
<< endl
<< "you entered m as " << m
<< " and n as " << n
<< endl;

}

pyth 1.cpp

Note that the values of m and n entered by the user are printed as part of
the output. This is good practice. Programs should not only display results
but should give some indication of the data that produced the results. In
this case the input data set was produced in full since it was small. In
situations where the input data set was large it might not be realistic to
reproduce it all but an indication such as

Results produced from Data Set No 23

might be output. This is vital if a listing of results is to mean anything at
a future date.

92

12.4 Example Program: Area and Perimeter of
Rectangle

Exercise 2 of Lesson 5 required an algorithm which given two values for the
breadth and height of a rectangle would output the area and perimeter of
the rectangle. However depending on whether the breadth and height were
equal or not different messages would be output indicating whether it was
a rectangle or a square. A suitable algorithm for this would be

enter values for breadth and height.
evaluate perimeter.
evaluate area.
if breadth is equal to height

then
output ’area and perimeter of square are ’

otherwise
output ’area and perimeter of rectangle are’.

output area and perimeter.

This algorithm is then easily converted into a C++ program as follows:

// IEA 1996
// Calculates area and perimeter of a rectangle
// after input of breadth and height. Distinguishes
// a square from a rectangle.

#include <iostream.h>

void main()
{

int breadth, height; // of rectangle
int perimeter, area; // of rectangle

// input breadth and height
cout << "Enter breadth and height: ";
cin >> breadth >> height;

// calculate perimeter and area
perimeter = 2*(breadth+height);
area = breadth*height;
if (breadth == height)

cout << "Area and perimeter of square are ";
else

cout << "Area and perimeter of rectangle are ";
// output area and perimeter
cout << area << " " << perimeter

<< endl;

93

}

rect 2.cpp

Note how portions of the algorithmic description have been used as com-
ments within the program. Remember that successive values sent to the
output stream cout will each be printed immediately after the previous
output value. Hence in the program above the printing of the actual val-
ues for the area and perimeter will be printed directly after the information
string on the same line. If a new line is required then send the end of line
marker endl to cout.

12.5 Summary

• An if-else statement is used to choose which of two alternative state-
ments to execute depending on the truth value of a condition.

12.6 Multiple Choice Questions

1. If y has the value 5 what will be the value of the variable y after the
following piece of C++ is executed?

if (y > 0)
y += 2;

else
y = 3;

(a) 5
(b) 7
(c) 3
(d) 2

2. Consider the following section of code:

if (base < height)
cout << "Top heavy structure" << endl;

else
cout << "Stable structure" << endl;

Which of the following possible values for base and height cause the
message Stable structure to be printed?

(a) base = 5, height = 3
(b) base = 8, height = 8
(c) base = 2, height = 7

94

12.7 Review Questions

1. If x has the value 3.5 when the following statement is executed what
value would be assigned to y?

if (x + 1 <= 3.6)
y = 1.0;

else
y = 2.0;

2. In words what do you think the effect of the following statement is
intended to be? Why is the statement syntactically incorrect? How
could it be changed to be syntactically correct? Has the change that
you have made ensured that the statement actually carries out the
logical effect you stated at the beginning?

if (x >= y)
sum += x;
cout << "x is bigger" << endl;

else
sum += y;
cout << "y is bigger" << endl;

3. Write an if-else statement which would add a variable x to a variable
possum if x is positive and would add x to negsum if the variable x was
negative.

4. Expand the solution to the previous question so that if x is positive
then a variable poscount is incremented and if x is negative a variable
negcount is incremented. If this was part of a program what would
be sensible initialisations to carry out?

12.8 Exercises

In each of these exercises produce an algorithmic description before proceed-
ing to write the program.

1. Write a C++ program which when two integers x and y are input will
output the absolute difference of the two integers. That is whichever
one of (x-y) or (y-x) is positive. Think of all the cases that can arise
and consequently plan a set of test data to confirm the correctness of
your program.

2. Write a C++ program which will compute the area of a square (area = side2)

or a triangle (area =
base ∗ height

2
) after prompting the user to type

the first character of the figure name (t or s).

95

3. Percentage marks attained by a student in three exams are to be en-
tered to a computer. An indication of Pass or Fail is given out after
the three marks are entered. The criteria for passing are as follows:

A student passes if all three examinations are passed. Additionally a
student may pass if only one subject is failed and the overall average
is greater than or equal to 50. The pass mark for an individual subject
is 40.

Write a C++ program to implement this task.

96

Lesson 13

Nested if and if-else

statements

The if-else statement allows a choice to be made between two possible
alternatives. Sometimes a choice must be made between more than two
possibilities. For example the sign function in mathematics returns -1 if the
argument is less than zero, returns +1 if the argument is greater than zero
and returns zero if the argument is zero. The following C++ statement
implements this function:

if (x < 0)
sign = -1;

else
if (x == 0)

sign = 0;
else

sign = 1;

This is an if-else statement in which the statement following the else
is itself an if-else statement. If x is less than zero then sign is set to
-1, however if it is not less than zero the statement following the else is
executed. In that case if x is equal to zero then sign is set to zero and
otherwise it is set to 1.

Novice programmers often use a sequence of if statements rather than
use a nested if-else statement. That is they write the above in the logically
equivalent form:

if (x < 0)
sign = -1;

if (x == 0)
sign = 0;

if (x > 0)
sign = 1;

97

This version is not recommended since it does not make it clear that
only one of the assignment statements will be executed for a given value of
x. Also it is inefficient since all three conditions are always tested.

If nesting is carried out to too deep a level and indenting is not consistent
then deeply nested if or if-else statements can be confusing to read and
interpret. It is important to note that an else always belongs to the closest
if without an else.

When writing nested if-else statements to choose between several al-
ternatives use some consistent layout such as the following:

if (condition1)
statement1 ;

else if (condition2)
statement2 ;
. . .

else if (condition-n)
statement-n ;

else
statement-e ;

Assume that a real variable x is known to be greater than or equal to
zero and less than one. The following multiple choice decision increments
count1 if 0 ≤ x < 0.25, increments count2 if 0.25 ≤ x < 0.5, increments
count3 if 0.5 ≤ x < 0.75 and increments count4 if 0.75 ≤ x < 1.

if (x < 0.25)
count1++;

else if (x < 0.5)
count2++;

else if (x < 0.75)
count3++;

else
count4++;

Note how the ordering of the tests here has allowed the simplification
of the conditions. For example when checking that x lies between 0.25 and
0.50 the test x < 0.50 is only carried out if the test x < 0.25 has already
failed hence x is greater than 0.25. This shows that if x is less than 0.50
then x must be between 0.25 and 0.5.

Compare the above with the following clumsy version using more com-
plex conditions:

if (x < 0.25)
count1++;

else if (x >= 0.25 && x < 0.5)
count2++;

98

else if (x >= 0.5 && x < 0.75)
count3++;

else
count4++;

13.1 Summary

• Nested if and if-else statements can be used to implement decisions
which have more than two outcomes.

• In nested if-else statements each else is associated with the nearest
preceding if which has no else already associated with it.

13.2 Multiple Choice Questions

1. What is the final value of x if initially x has the value 1?

if (x >= 0)
x += 5;

else if (x >=5)
x += 2;

(a) 8

(b) 6

(c) 1

2. What is the final value of x if initially x has the value 0?

if (x >= 0)
x += 5;

if (x >= 5)
x += 2;

(a) 7

(b) 5

(c) 0

13.3 Review Questions

1. It is decided to base the fine for speeding in a built up area as follows
- 50 pounds if speed is between 31 and 40 mph, 75 pounds if the speed
is between 41 and 50 mph and 100 pounds if he speed is above 50 mph.
A programmer writing a program to automate the assessment of fines
produces the following statement:

99

if (speed > 30)
fine = 50;

else if (speed > 40)
fine = 75;

else if (speed > 50)
fine = 100;

Is this correct? What fine would it assign to a speed of 60 mph? If
incorrect how should it be written?

2. Write a nested if-else statement that will assign a character grade
to a percentage mark as follows - 70 or over A, 60-69 B, 50-59 C, 40-49
D, 30-39 E, less than 30 F.

13.4 Exercises

1. Extend the mark-processing exercise 3 in Lesson 12 as follows. Print
out the student’s average mark (to the nearest integer) and also in-
clude a grade A to F alongside the average mark as defined in review
question 2 above.

100

Lesson 14

The switch statement

In the last Lesson it was shown how a choice could be made from more
than two possibilities by using nested if-else statements. However a less
unwieldy method in some cases is to use a switch statement. For example
the following switch statement will set the variable grade to the character
A, B or C depending on whether the variable i has the value 1, 2, or 3. If
i has none of the values 1, 2, or 3 then a warning message is output.

switch (i)
{

case 1 : grade = ’A’;
break;

case 2 : grade = ’B’;
break;

case 3 : grade = ’c’;
break;

default : cout << i
<< " not in range";

break;
}

The general form of a switch statement is:

switch (selector)
{

case label1 : statement1 ;
break;

case label2 : statement2 ;
break;

. . .
case labeln : statementn ;

break;
default : statementd ; // optional

101

break;
}

The selector may be an integer or character variable or an expression that
evaluates to an integer or a character. The selector is evaluated and the
value compared with each of the case labels. The case labels must have
the same type as the selector and they must all be different. If a match is
found between the selector and one of the case labels, say labeli , then the
statements from the statement statementi until the next break statement
will be executed. If the value of the selector cannot be matched with any
of the case labels then the statement associated with default is executed.
The default is optional but it should only be left out if it is certain that
the selector will always take the value of one of the case labels. Note that
the statement associated with a case label can be a single statement or a
sequence of statements (without being enclosed in curly brackets).

14.1 Examples of switch statements

The following statement writes out the day of the week depending on the
value of an integer variable day. It assumes that day 1 is Sunday.

switch (day)
{
case 1 : cout << "Sunday";

break;
case 2 : cout << "Monday";

break;
case 3 : cout << "Tuesday";

break;
case 4 : cout << "Wednesday";

break;
case 5 : cout << "Thursday";

break;
case 6 : cout << "Friday";

break;
case 7 : cout << "Saturday";

break;
default : cout << "Not an allowable day number";

break;
}

If it has already been ensured that day takes a value between 1 and
7 then the default case may be missed out. It is allowable to associate
several case labels with one statement. For example if the above example is
amended to write out whether day is a weekday or is part of the weekend:

102

switch (day)
{

case 1 :
case 7 : cout << "This is a weekend day";

break;
case 2 :
case 3 :
case 4 :
case 5 :
case 6 : cout << "This is a weekday";

break;
default : cout << "Not a legal day";

break;
}

Remember that missing out a break statement causes control to fall
through to the next case label — this is why for each of the days 2–6 ‘This is a
weekday’ will be output. Switches can always be replaced by nested if-else
statements, but in some cases this may be more clumsy. For example the
weekday/weekend example above could be written:

if (1 <= day && day <= 7)
{

if (day == 1 || day == 7)
cout << "This is a weekend day";

else
cout << "This is a weekday";

}
else

cout << "Not a legal day";

However the first example becomes very tedious—there are eight alterna-
tives! Consider the following:

if (day == 1)
cout << "Sunday";

else if (day == 2)
cout << "Monday";

else if (day == 3)
cout << "Tuesday";

.

.
else if (day == 7)

cout << "Saturday";
else

cout << "Not a legal day";

103

14.2 Summary

• A switch statement selects the next statement to be executed from
many possible statements. The selection is made depending on the
value of a selector variable which can only be an integer or a character.

• If the selector variable does not match any of the case labels then the
statements associated with the default label will be executed.

• The default label is optional but if it is not included then a selector
which does not match any of the case labels causes the whole switch
statement to be ignored.

14.3 Multiple Choice Questions

1. What is the value of the variable c after the switch statement below?

x = 3;
switch (x) {

case 1: c = ’A’; break;
case 2: c = ’B’; break;
case 3: c = ’C’; break;
default: c = ’F’; break;

}

(a) A

(b) B

(c) C

(d) F

14.4 Review Questions

1. A student is given a grade from ‘A’ to ‘F’ in a test. So averages can
be calculated it is required to assign marks to these grades as follows,
‘A’ is 10, ‘B’ is 8, ‘C’ is 6, ‘D’ is 4, ‘E’ is 2 and ‘F’ is 0. In C++ what
two methods are there of doing this? Which of these two methods
would be better in this case? Write the appropriate statement for the
method you have chosen.

2. A student has a percentage mark for an examination, these marks are
to be converted to grades as follows:

>=70 ‘A’
60-69 ‘B’

104

50-59 ‘C’
40-49 ‘D’
30-39 ‘E’
<30 ‘F’

Could a switch statement be used to directly assign the appropriate
grade given a percentage mark? If not how could you do this? Write
a statement to carry out the assignment of grades.

3. Write a switch statement to assign grades as described in the previous
question. Use the fact that mark/10 gives the first digit of the mark.

14.5 Exercises

1. Amend the program you wrote for Exercise 1 in Lesson 13 so that it
uses a switch statement to assign the grade. Use the idea suggested in
Review question 3 above.

105

Lesson 15

Further Structured Design

15.1 Repetition Control Structures

In Section 5.2 it was shown that algorithms can be described using a few con-
cepts, namely, sequence, conditional execution (or selection) and repetition.
The idea of assignment was also used.

In Section 9.1 algorithm design using top-down structured methods was
considered. In that section only conditional structures were covered. This
section considers repetition control structures which have already been il-
lustrated in Lesson 5. They are further expanded below.

15.2 Example One: Using a while loop

The following algorithm illustrates several techniques. The requirement is
for a program which given a set of positive data values will output the min-
imum value, the maximum value and the average value of the data values.

Before starting on the algorithmic description it must be decided how
termination of the data is to be signalled. It would be irritating to the user
if after each data entry a yes or no reply had to be given to a question
asking whether there was any more data. Equally it might be difficult (and
error-prone) for the user to give a count of the number of data elements
before processing starts. In this case a better way is to make use of the fact
that all the numbers are positive, if the user then enters a negative number
when there are no more numbers to process then the program can easily
recognise this entry as not being a data entry and hence terminate the entry
of data. This technique of placing a sentinel to terminate an input list is
commonplace.

It must also be decided what should happen when there is no input,
that is the user enters a negative number initially. Also it must be known
what type of numbers are entered, are they whole numbers or real numbers?
Hence the following improved requirement specification:

106

A user is to enter positive real values from the keyboard when
prompted by the program. To signal end of input the user en-
ters a negative number. When data entry has terminated the
program should output the minimum positive value entered, the
maximum positive value entered and the average of the positive
values entered. If there is no data entry (the user enters a nega-
tive number initially) then the program should output a message
indicating that no data has been entered.

In this program as each number is entered it must be compared with
zero to check if it is the sentinel value that terminates input. Each pos-
itive number must be added to an accumulated sum and a count of the
number of numbers entered must be incremented (so the average can be
found). Also each positive number entered must be compared with the min-
imum/maximum entered so far and if necessary these values are updated.
This means that while the entered number is positive it must be processed.
Thus a first attempt at an algorithm might be:

initialise.
enter first value.
while (value is positive)

{
process value.
enter a value.

}
if no data entry

then output ‘no data entry’
otherwise

{
evaluate average.
output results.

}

As usual the first thing done in this algorithm is an initialise step.
This will be expanded later once the details of the rest of the algorithm
have been finalised. The process value statement must carry out various
tasks. The sum of the input data values must be accumulated and a count of
the number of values entered must be incremented. The data value read in
must be compared with the minimum/maximum so far input and if necessary
these values are updated. Hence the expansion of process value is:

process value:
add value to accumulated sum.
add one to count of number of values.
if value is bigger than saved maximum then

107

put value in saved maximum.
if value is less than saved minimum then

put value in saved minimum.

Looking at this expansion it is obvious that prior to the first entry to
the loop the following variables require initialisation:

1. a variable for the accumulated sum — this must start at zero.

2. a variable for the number of values — again this starts at zero.

3. variables for the saved maximum and minimum — at the first execu-
tion of process value the only previous value is the first value, hence
the initialisation is to set the saved maximum and the saved minimum
to this value.

Hence the beginning of the program can be expanded to:

set sum to zero.
set count to zero.
enter first value.
set saved minimum and saved maximum

to this value.

If no data is entered then this can be recognised by the fact that count
will be zero after execution of the while statement. Finding the average
merely requires dividing the sum by the count of values and output is fairly
obvious. Thus the final version is:

set sum to zero.
set count to zero.
enter first value.
set minimum and maximum to this value.
while (value is positive)

{
add value to sum.
add one to count.
if value is bigger than maximum then

set maximum to value.
if value is smaller than minimum then

set minimum to value.
read a value.
}

if count is zero
then output ‘no data entry’
else {

set average to sum/count.

108

output count, average, maximum and minimum.
}

Note that if no data is entered then the terminating negative value will
be assigned to minimum and maximum. This does not matter because in
this case no use is made of these variables.

15.3 Example Two: Using a while loop

A set of marks are available for a class of students. For each student the
following details are available:

a candidate number - 4 digits
a percentage examination mark for subject 1
a percentage coursework mark for subject 1
a percentage examination mark for subject 2
a percentage coursework mark for subject 2

A program is required which will read in the marks as above for each
student and will output for each student, in one line, the above information
together with a final mark for each subject. The final mark in each subject
is 70% of the examination mark plus 30% of the coursework mark. The
average final mark for each subject should also be output. End of input is
to be signalled by input of a negative candidate number. A first algorithmic
description of the required program is:

initialise.
enter candidate number.
while candidate number is positive

{
enter marks for candidate.
process marks.
output results for candidate.
enter candidate number.

}
calculate subject averages.
output subject averages.

A little thought shows that two accumulation variables will be required
to sum the two final subject marks, and since an average has to be found
the number of students must be counted. Initially these sums and the count
must be initialised to zero and in process marks the marks must be added
to the sums and the count incremented. Including these features the algo-
rithmic description is expanded to:

109

set sum1 and sum2 to zero.
set count to zero.
enter candidate number.
while candidate number is positive

{
enter s1, cw1, s2, cw2. // the four candidate marks
increment count.
set final1 to 0.7*s1+0.3*cw1.
set final2 to 0.7*s2+0.3*cw2.
add final1 to sum1.
add final2 to sum2.
output candidate number, s1, cw1, s2, cw2, final1, final2.
enter candidate number.

}
set subject1 average to sum1/count.
set subject2 average to sum2/count.
output subject1 average.
output subject2 average.

Note that this algorithm would fail if the first candidate number entered
was negative. The statement loop in the while statement would not be exe-
cuted and hence count would retain its initial value of zero. This would lead
to a division by zero when an attempt was made to calculate the averages.
It is often difficult to decide whether a program should cope gracefully with
non-existent data, after all why would a user use the program if they had no
data to enter? However a typing error may lead to the entry of unsuitable
data and it is preferable that the program should recover gracefully from
this situation rather than fail with an obscure run-time error later. This
algorithm could do this by either checking the sign of the first candidate
number entered and terminating with a suitable message if it is negative
or could recognise the situation by checking that count is non-zero before
proceeding to calculate the average.

This algorithm could be extended by adding various facilities to it, for
example indicating for each student whether they have passed judged by
some criteria. See the exercises for possible extensions for you to try.

15.4 Other forms of Repetition Control Structures

The while statement used above executes a statement while some condition
remains true. Sometimes it is more natural to repeat something until some
condition becomes true. The repetition portion of the first version of the
algorithm in Section 15.2 could be written in the alternative form:

initialise.

110

Enter first value.
repeat

{
process value.
enter a value.

}
until value is negative.

If this version is executed using some positive values terminated by a nega-
tive value then it has exactly the same effect as the version using the while
statement. However its behaviour is different if a negative number is entered
first. In the repeat-until statement the termination condition is tested after
the body of the loop has been executed once. Hence in this example the
negative value entered first would be processed, giving a result when none
was expected and then another entry value would be expected. Hence the
repeat-until statement cannot be easily used in situations where it might not
be necessary to execute the body of the loop. In this case it is better to use
the while statement which tests a continuation condition before executing
the body of the loop.

Another form of repetition control is often required, that is to repeat
some statement a known number of times. This can be done with a while
statement. For example to execute a statement n times could be imple-
mented as follows:

set count to zero.
while count is less than n

{
statement.
increment count.
}

There are several things that the programmer has to get right here, the
initial value of count, the condition and remembering to increment count
inside the loop body. It would be simpler to use a construct like:

repeat n times
{
statement.
}

Many loops fall into this simple category. The following problem identifies
a related form of repetition control structure.

Write a program to enter a value for n and output a table of the
squares of the numbers from 1 to n.

An algorithm to solve this problem could be written as follows:

111

for i taking values from 1 to n do
{
output i and i squared.
take a new line.
}

It is normal in the forms ‘repeat n times’ and ‘for i taking values from start
to finish’ to not execute the body of the loop if n is zero or if the start value
is greater than the finish value.

The most basic of repetition control structures is the while control struc-
ture since all the others can be simulated by it. However the others are
useful in some cases, particularly the for control structure. They all have
equivalents in C++.

15.5 Summary

• An important facility in designing algorithms is the ability to specify
the repetition of a group of operations.

• The repetition of a group of statements is called a loop and the state-
ments that are repeated are called the body of the loop.

• The most basic repetition control structure is the while loop. This
loop repeats the body of a loop while some condition remains true. If
the condition is initially false then the loop body is never executed.

• The repeat-until repetition control structure repeats the body of the
loop until some condition becomes true. Since the body of the loop
is executed before the test of the condition this means that the body
of the loop is always executed at least once.

• The for repetition control structure repeats the body of the loop a
fixed number of times, possibly while some control variable sequences
through a specified set of values.

15.6 Review questions

1. What does the following algorithm do?

set sum to zero.
set i to 1.
input n.
while i is less than or equal to n do

{
add i to sum.

112

increment i.
}

output sum.

What would be output if the value entered for n was 0? What would
be the effect of reversing the order of the statements in the loop body
on the general result produced by the algorithm?

15.7 Exercises

1. In example 2 in this lesson an algorithm was produced to process
examination marks. Extend the algorithm so that an indication of
pass or fail is printed for each student. A student passes if his/her
average mark over the two subjects is greater than 40 and neither
mark is below 35. Also extend the algorithm so that it will output a
suitable message if no student details are entered.

2. Design an algorithm to solve the following problem:

A set of numbers is to be entered to the computer and the
number of negative and the number of positive values en-
tered are to be output. All the numbers lie between -100.0
and 100.0.

Use a sentinel controlled loop and choose a suitable value for the sen-
tinel.

3. Rewrite your solution to Exercise 1 for the case where the number of
students in the class is entered initially. Write one version using a
while loop and another using a repeat loop.

4. Write an algorithm which will print out a table of ascending powers
of two from two to the power zero (1) and terminate printing at the
greatest value less than 10,000. Give two versions of the algorithm,
one using a while loop and the other using a repeat-until loop.

113

Lesson 16

The while statement

The following piece of C++ illustrates a while statement. It takes a value
entered by the user and as long as the user enters positive values it accumu-
lates their sum. When the user enters a negative value the execution of the
while statement is terminated.

sum = 0.0;
cin >> x;
while (x > 0.0)

{
sum += x;
cin >> x;

}

The variable sum which is to hold the accumulated sum is initialised to
zero. Then a value for x is entered so that x has a value before being tested
in the condition x > 0.0. Note that the value of x is updated in the body
of the while loop before returning to test the condition x > 0.0 again.

The general form of a while statement is:

while (condition)
statement

While the condition is true the statement is repeatedly executed. The state-
ment may be a single statement (terminated by a semi-colon) or a compound
statement. Note the following points:

1. It must be possible to evaluate the condition on the first entry to the
while statement. Thus all variables etc. used in the condition must
have been given values before the while statement is executed. In the
above example the variable x was given a value by entering a value
from the user.

2. At least one of the variables referenced in the condition must be
changed in value in the statement that constitutes the body of the

114

loop. Otherwise there would be no way of changing the truth value
of the condition, which would mean that the loop would become an
infinite loop once it had been entered. In the above example x was
given a new value inside the body of the while statement by entering
the next value from the user.

3. The condition is evaluated before the statement is executed. Thus if
the condition is initially false then the statement is never executed. In
the above example if the user entered a negative number initially then
no execution of the body of the while loop would take place.

16.1 Example while loop: Printing integers

The following while statement prints out the numbers 1 to 10, each on a
new line.

int i;
i = 1;
while (i <= 10)

{
cout << i << endl;
i++;

}

nl while.cpp

16.2 Example while loop: Summing Arithmetic
Progression

The following portion of C++ uses a while statement to produce the sum
1+2+3+ . . . +n, where a value for n is entered by the user. It assumes that
integer variables i, n and sum have been declared:

cout << "Enter a value for n: ";
cin >> n;
sum = 0;
i = 1;
while (i <= n)

{
sum += i;
i++;

}
cout << "The sum of the first " << n

<< " numbers is " << sum << endl;

115

sumnat 1.cpp

There are several important points to note here:

1. The condition i <= n requires that i and n must have values before
the while loop is executed. Hence the initialisation of i to 1 and
the entry of a value for n before the while statement.

2. It is possible that a while loop may not be executed at all. For example
if the user entered a value 0 for n then the condition i <= n would be
false initially and the statement part of the while loop would never
be entered.

3. When accumulating the sum of a sequence the variable in which we
accumulate the sum must be initialised to zero before commencing
the summation. Note also that if the user entered a value for n that
was less than 1 then the initialisation of sum would mean that the
program would return zero as the accumulated total — if n is zero this
is certainly a sensible value.

4. There is no unique way to write a while statement for a particular
loop. For example the loop in this example could have been written
as follows:

i = 0;
while (i < n)

{
i = i + 1;
sum = sum + i;

}

without changing the result.

16.3 Example while loop: Table of sine function

The following program produces a table of x and sin(x) as x takes values 0
to 90 degrees in steps of 5 degrees. Note that the C++ sin function takes
an argument in radians, not in degrees. In the program below sin(radian)
returns the sine of an angle radian expressed in radians. The mathematical
function library will be covered in more detail in section 20.2.

// IEA Oct. 95
// Tabulates x and sin(x)

#include <iostream.h>
#include <math.h> // because we are going to use

116

// a mathematical function
void main()
{

const float degtorad = M_PI/180; // convert degrees
// to radians

int degree = 0; // initialise degrees to zero
float radian; // radian equivalent of degree

// Output headings
cout << endl << "Degrees" << " sin(degrees)"

<< endl;
// Now loop

while (degree <= 90)
{
radian = degree * degtorad; // convert degrees to

// radians
cout << endl << " " << degree << " "

<< sin(radian);
degree = degree + 5; // increment degrees

}
cout << endl;

}

sin 2.cpp

Note that the mathematical constant π is defined in the mathematical
library as M_PI.

16.4 Example while loop: Average, Minimum and
Maximum Calculation

In section 15.2 an algorithm was designed given the following requirement
specification:

A user is to enter positive float values from the keyboard when
prompted by the program. To signal end of input the user enters
a negative integer. When data entry has terminated the program
should output the minimum value entered, the maximum value
entered and the average of the positive values entered. If there is
no data entry (the user enters a negative number initially) then
the program should output a message indicating that no data
has been entered.

The final version of the algorithm was:

117

set sum to zero.
set count to zero.
enter first value.
set minimum and maximum to this value.
while (value is positive)

{
add value to sum.
add one to count.
if value is bigger than maximum then

set maximum to value.
if value is smaller than minimum then

set minimum to value.
read a value.
}

if count is zero
then output ‘no data entry’
else {

set average to sum/count.
output count, average, maximum and minimum.
}

The above algorithm can be written in C++ as follows:

// IEA Aug 96
// Reads in positive data until a negative number
// is entered and calculates the average and the
// maximum and minimum of the positive entries.

#include <iostream.h>

void main()
{

float value, sum;
float average, minimum, maximum;
int count;

// initialise
sum = 0.0;
count = 0;
cout << "Enter a value: ";
cin >> value;
minimum = value;
maximum = value;
while (value >= 0.0)

{
// process value

118

sum += value;
count++;
if (value > maximum)

maximum = value;
else if (value < minimum)

minimum = value;
// get next value

cout << "Enter a value: ";
cin >> value;

}
if (count == 0)

cout << "No data entry" << endl;
else

{
average = sum / count;
cout << "There were " << count << " numbers" << endl;
cout << "Average was " << average << endl;
cout << "Minimum was " << minimum << endl;
cout << "Maximum was " << maximum << endl;

}
}

maxminav.cpp

16.5 Example Program: Student mark processing

A set of marks are available for a class of students. For each student the
following details are available:

a candidate number - 4 digits
a percentage examination mark for subject 1
a percentage coursework mark for subject 1
a percentage examination mark for subject 2
a percentage coursework mark for subject 2

A program is required which will read in the marks as above for each
student and will output for each student, in one line, the above information
together with a final mark for each subject. The final mark in each subject
is 70% of the examination mark plus 30% of the coursework mark. The
average final mark for each subject should also be output. End of input is
to be signalled by input of a negative candidate number. A first algorithmic
description of the required program is:

initialise.

119

enter candidate number.
while candidate number is positive

{
enter marks for candidate.
process marks.
output results for candidate.
enter candidate number.

}
calculate subject averages.
output subject averages.

A little thought shows that two accumulation variables will be required
to sum the two final subject marks, and since an average has to be found
the number of students must be counted. Initially these sums and the count
must be initialised to zero and in process marks the marks must be added
to the sums and the count incremented. Including these features the algo-
rithmic description is expanded to:

set sum1 and sum2 to zero.
set count to zero.
enter candidate number.
while candidate number is positive

{
enter s1, cw1, s2, cw2. // the four candidate marks
increment count.
set final1 to 0.7*s1+0.3*cw1.
set final2 to 0.7*s2+0.3*cw2.
add final1 to sum1.
add final2 to sum2.
output candidate number, s1, cw1, s2, cw2, final1, final2.
enter candidate number.

}
set subject1 average to sum1/count.
set subject2 average to sum2/count.
output subject1 average.
output subject2 average.

This is then easily translated into the following program - the main
function only is listed.

void main()
{

int candno; // candidate number
int s1, cw1, s2, cw2; // candidate marks
int final1, final2; // final subject marks

120

int count; // number of students
int sum1, sum2; // sum accumulators
int subav1, subav2; // subject averages
const float EXAMPC = 0.7, // mark weightings

CWPC = 0.3;
// initialise

sum1 = 0;
sum2 = 0;
count = 0;

// enter candidate number
cout << "Input candidate number: ";
cin >> candno;
while (candno >= 0)

{
// enter marks

cout << "Input candidate marks: ";
cin >> s1 >> cw1 >> s2 >> cw2;

// process marks
count++;
final1 = int(EXAMPC*s1 + CWPC*cw1);
final2 = int(EXAMPC*s2 + CWPC*cw2);
sum1 += final1;
sum2 += final2;

// output candidate number and marks
cout << candno << " "

<< s1 << " " << cw1 << " "
<< s2 << " " << cw2 << " "
<< final1 << " " << final2
<< endl;

// enter next candidate number
cout << "Input candidate number (negative to finish): ";
cin >> candno;

}
// evaluate averages

subav1 = sum1/count;
subav2 = sum2/count;

// output averages
cout << endl << "Subject1 average is " << subav1

<< endl << "Subject2 average is " << subav2
<< endl;

}

exam 1.cpp

121

Note that this program would fail if the first candidate number entered
was negative. The statement loop in the while statement would not be
executed and hence count would retain its initial value of zero. This would
lead to a division by zero when an attempt was made to calculate the aver-
ages. It is often difficult to decide whether a program should cope gracefully
with non-existent data, after all why would a user use the program if they
had no data to enter? However a typing error may lead to the entry of un-
suitable data and it is preferable that the program should recover gracefully
from this situation rather than fail with an obscure run-time error later.
This program could do this by either checking the sign of the first candidate
number entered and terminating with a suitable message if it is negative
or could recognise the situation by checking that count is non-zero before
proceeding to calculate the average.

This program could be extended by adding various facilities to it, for
example indicating for each student whether they have passed judged by
some criteria. See the exercises for possible extensions for you to try.

16.6 Example Program: Iterative evaluation of a
square root

Frequently in solving scientific problems iterative methods are used. In
an iterative method a first approximation to a solution of the problem is
produced, then some method which improves the accuracy of the solution is
used repeatedly until two successive approximations agree to the accuracy
required. This process could be described algorithmically as follows:

produce first approximation in a variable old_app.
produce a better approximation as a function

of old_app in a variable new_app.
while old_app and new_app are not close enough

{
set old_app equal to new_app.
produce a better approximation as a function

of old_app in the variable new_app.
}

A simple problem that can be solved in this way is that of finding the
square root of a positive number. If old is an approximation to the square
root of a number x then a better approximation, new, is given by:

new = (old +
x

old
)/2

For example taking 3 as an approximation to the square root of 10 gives
the following sequence of approximations:

122

old new

3 (3 + 10/3)/2 → 3.17
3.17 (3.17 + 10/3.17)/2 → 3.1623
3.1623 (3.1623 + 10/3.1623)/2 → 3.162278

It can be seen that the sequence of approximations is rapidly converging
to the correct value, which is 3.16227766. This may not always be true in
every application of iterative methods, but in the case of square roots it will
always happen as long as the first approximation chosen is positive.

In the algorithmic description above the phrase ‘while old_app and
new_app are not close enough’ was used. How do we test this? In the
square root example it might be decided that the new approximation would
be accepted as the correct value of the root when it differed by less than
0.0005 from the previous approximation. This would mean that the esti-
mate of the root was correct to three decimal places. It might be tempting
to write the test as

while ((new_app-old_app) > 0.0005)

but in the second iteration this test would give 3.1623-3.17 > 0.0005
which is equivalent to -0.0077 > 0.0005 which is false, causing the itera-
tion process would stop prematurely. The problem is that if new_app-old_app
is ever negative then since a negative number can never be greater than a
positive number the condition will become false however large the difference
between new_app and old_app! The solution to this problem is to test the
absolute magnitude, without regard to sign, of new_app and old_app. C++
has a function fabs(x) which returns the absolute value of x i.e. x if x is
positive and -x if x is negative. Using this function the test could be written:

while (fabs(new_app-old_app) > 0.0005)

which solves the problem above. In general if trying to find if two quantities
are within some tolerance of each other then test the absolute value
of the difference between them against the tolerance. However there is
another difficulty with the above. Consider the following approximations:

exact value approximation

100 100.1
0.1 0.2

Which of these approximations is the most accurate? They both have
an absolute error of 0.1 but in one case the error is 0.1% of the quantity
being approximated and in the other it is 100% of the quantity being ap-
proximated. Thus if these approximations were used as a multiplying factor
in the next stage of a computation then in one case the answer would be a

123

small fraction larger than it should be whereas in the other case the answer
would be twice what it should be! Thus the relative size of the error with
respect to the quantity being approximated is important. In the square root
problem if x was 0.000001, with square root 0.001, then two successive ap-
proximations 0.0015 and 0.00108 would have a difference less than 0.0005
and hence 0.00108 would be accepted as a result. However this result would
be 8% in error. Hence it is always safer to test the relative error against the
tolerance, this ensures that results of different sizes have the same number
of significant figures correct. Hence if three significant figures were required
in the result the test should be:

while (fabs((new_app-old_app)/new_app) > 0.0005)

Since the square root of a negative number is not defined (in real arith-
metic) no attempt should be made to use this algorithm if the value input
is negative. Also if the input is zero, which has square root zero, the use of
this algorithm will lead to a division by something approaching zero. This
should be avoided by making zero a special case. Hence the program:

void main()
{

const float tol = 0.000005; // relative error tolerance
float value;
float old_app, new_app;
cout << "Square root of a number"

<< endl << endl;
cout << "Enter a positive number: ";
cin >> value;
if (value < 0.0)

cout << "Cannot find square root of negative number"
<< endl;

else
if (value == 0.0)

cout << "square root of "
<< value
<< " is 0.0"
<< endl;

else
{

old_app = value; // take value as first approximation
new_app = (old_app + value/old_app)/2;
while (fabs((new_app-old_app)/new_app) > tol)
{

old_app = new_app;
new_app = (old_app + value/old_app)/2;

124

}
cout << "square root of "

<< value
<< " is " << new_app
<< endl;

}
}

sqrt.cpp

16.7 Summary

• The while statement in C++ allows the body of a loop to be exe-
cuted repeatedly until a condition is not satisfied. For as long as the
condition is true the loop body is executed.

• The while statement is the most fundamental of the iteration state-
ments. Because the condition is tested before executing the loop state-
ment the loop statement may be executed zero or more times.

• A while statement requires initialisation of any variables in the condi-
tion prior to entering the while statement . The loop statement must
include statements to update at least one of the variables that occurs
in the loop condition.

• In testing for convergence of successive values in an iterative sequence
always compare the absolute difference of successive values with the
required tolerance in testing for termination. It is almost always better
to test the relative error between successive values rather than the
absolute error.

16.8 Multiple Choice Questions

1. What is the value of i after the while statement below?

n = 10;
i = 0;
while (i < n) {
...
i++;
}

(a) 9

(b) 10

125

(c) 11

2. What are the first and last values of i output by this loop?

n = 10;
i = 0;
while (++i < n) {

cout << i << endl;
}

(a) 1 and 9

(b) 0 and 9

(c) 0 and 10

(d) 1 and 10

3. What are the first and last values of i output by this loop?

n = 10;
i = 0;
while (i++ < n) {

cout << i << endl;
}

(a) 1 and 10

(b) 0 and 10

(c) 1 and 9

(d) 0 and 9

16.9 Review Questions

1. What would be output by the following segment of C++?

int fact, i;
fact = 1;
i = 2;
while (i <= 6)

fact *= i;
i++;

cout << fact;

If the purpose of this segment of C++ was to output the value of
1*2*3*4*5*6 how should it be changed?

2. Consider the following piece of C++

126

int i;
while (i < 10)

{
cout << i << endl;
i++;

}

To what should i be initialised so that the loop would be traversed
10 times? In this case what would be printed out? How would you
change the body of the loop so that with the same initialisation the
numbers 1 to 10 would be printed? If the body of the loop was kept as
it is above how should the initialisation and the condition be changed
so that the numbers 1 to 10 are printed out?

3. Write C++ statements using a while statement to print n asterisks
at the beginning of a new line.

4. Write C++ statements using a while statement to evaluate n!, i.e.
1*2*3*. . . *n, 0! is 1.

16.10 Exercises

1. In exercise 2 of Lesson 15 you should have developed an algorithm for
the following problem:

A set of numbers is to be entered to the computer and the
number of negative and the number of positive values en-
tered are to be output. All the numbers lie between -100.0
and 100.0.

Now implement your algorithm as a C++ program using a while loop
and a sentinel value to terminate input. Make up a suitable small set
of data and choose a suitable sentinel value to terminate input and
test your program.

2. In exercise 3 of Lesson 15 you should have developed an algorithm to
generate all powers of two up to the largest power less than 10,000.
Now implement this as a C++ program. Once you have this working
change the program so that the user can enter a value for the stopping
value (i.e. a value to replace the 10,000). If you try to enter a value that
would cause a number greater than the largest int variable possible
to be generated then errors will occur! The form the error will take
will depend on the compiler being used, it might generate erroneous
results and/or get stuck in an infinite loop. The onset of this problem
can be delayed by declaring the integer variables holding the limit and
the power of two as being of type long int which will allow these

127

variables to take values up to a 10 digit integer. It is important while
programming to remember that there are limitations on the size and
precision that numerical values can take, if these limitations are not
kept in mind nonsensical results can be produced.

3. The standard C++ library contains functions to generate random
numbers. Consider the following C++ program which will print out
ten random integers:

#include <stdlib.h>
#include <time.h>
#include <iostream.h>

void main()
{
int r; // random integer;
int i = 0; // control variable
srand(time(0)); // initialise random number generator
while (i < 10)

{
r = rand(); // gets random int in 0-RAND_MAX
cout << "Random integer was " << r;
i++;
}

}

Note that the function srand is used once at the beginning of main,
this ensures that the random number sequence will start at a different
value each time that the program is run. If the call of srand was left
out then the program would deliver exactly the same results each time
it was run, not very random! The function rand() returns a random
integer in the range 0 to RAND_MAX. RAND_MAX is a const int defined
in the include file stdlib.h. The use of time(0) as an argument to
srand ensures that a new starting value is used each time the program
is run. Note that the inclusion of the files stdlib.h and time.h is
required before these functions can be used.

Now extend the above program so that it generates n random numbers,
where n is entered by the user, and counts how many of the random
integers generated are less than a half of RAND_MAX. If the random
number generator is producing a uniform spread of random numbers
in the interval then this should converge towards a half of n. Execute
your program with increasing values of n (but not bigger than 32767).

128

Lesson 17

The do-while statement

The following example is a version using a do-while statement of the prob-
lem considered at the beginning of the Lesson on the while statement. The
program has to accept positive numbers entered by a user and to accumulate
their sum, terminating when a negative value is entered.

sum = 0.0;
cin >> x;
do {

sum += x;
cin >> x;

}
while (x > 0.0);

Again the accumulator variable sum is initialised to zero and the first
value is entered from the user before the do-while statement is entered for
the first time. The statement between the do and the while is then executed
before the condition x > 0.0 is tested. This of course is different from the
while statement in which the condition is tested before the statement is
executed. This means that the compound statement between the do and the
while would be executed at least once, even if the user entered a negative
value initially. This value would then be added to sum and the computer
would await entry of another value from the user! Thus do-while statements
are not used where there is a possibility that the statement inside the loop
should not be executed.

The general form of the do-while statement is:

do
statement

while (condition); // note the brackets!

In the do-while statement the body of the loop is executed before the
first test of the condition. The loop is terminated when the condition be-
comes false. As noted above the loop statement is always executed at least

129

once, unlike the while statement where the body of the loop is not exe-
cuted at all if the condition is initially false. The statement may be a single
statement or a compound statement. The effect of a do-while statement
can always be simulated by a while statement so it is not strictly neces-
sary. However in some situations it can be more convenient than a while
statement.

17.1 Example Program: Sum of Arithmetic Pro-
gression

The following loop produces the sum 1+2+3+ . . . +n, where a value for n is
entered by the user:

cout << "Enter a value for n: ";
cin >> n;
sum = 0;
i = 1;
do

{
sum += i;
i++;

}
while (i <= n);

sumnat 2.cpp

If the user entered a value of 0 for n then the value of 1 would be returned
as the value of sum. This is obviously incorrect and, as noted above, is
because the loop statement of a do-while loop is always executed at least
once. In this case if the entered value of n is zero then the loop statement
should not be entered at all! Thus if there is any possibility that some valid
data may require that a loop be executed zero times then a while statement
should be used rather than a do-while statement.

17.2 Example Program: Valid Input Checking

The do-while statement is useful for checking that input from a user lies in
a valid range and repeatedly requesting input until it is within range. This
is illustrated in the following portion of C++ program:

bool accept; // indicates if value in range
float x; // value entered

130

float low, high; // bounds for x

// assume low and high have suitable values
do {

cout << "Enter a value (" << low <<" to "
<< high << "):";

cin >> x;
if (low <= x && x <= high)
accept = true;

else
accept = false;

}
while (!accept);

valid.cpp

Note the use of the logical operator not (!) operating on the boolean
value, to invert its truth value.

Another way of controlling the loop is to assign the value of the condition
directly to accept. At first sight, this may appear strange, but the condition
is already being evaluated as either true or false, so it makes sense to
replace the if-else statement with

accept = low <= x && x <= high;

17.3 Example Program: Student Mark Processing
(2)

The program in section 16.5 could have equally well have been written using
a do-while loop. The do-while loop would be:

cin >> candno;
do {

// enter marks
cout << "Input candidate marks: ";
cin >> s1 >> cw1 >> s2 >> cw2;

// process marks
count = count+1;
final1 = int(EXAMPC*s1+CWPC*cw1);
final2 = int(EXAMPC*s2+CWPC*cw2);
sum1 = sum1+final1;
sum2 = sum2+final2;

// output marks
cout << candno << " "

131

<< s1 << " " << cw1 << " "
<< s2 << " " << cw2 << " "
<< final1 << " " << final2
<< endl;

// enter candidate number
cout << "Input candidate number (negative to finish): ";
cin >> candno;
} while (candno >= 0);

exam 2.cpp

This is not completely equivalent to the while statement version. Con-
sider what happens if the user initially enters a negative candidate number—
they would be surprised to then be asked for further data and another can-
didate number! If there is at least one candidate then the two versions are
equivalent.

17.4 Summary

• The do-while loop statement will always be executed at least once
since the condition is not tested until after the first execution of the
loop statement.

17.5 Multiple Choice Questions

1. What is the value of i after the do-while statement below?

n = 10;
i = 0;
do {
...
i++;
} while (i < n);

(a) 9

(b) 10

(c) 11

2. What are the first and last values of i output by this loop?

n = 10;
i = 0;
do {

132

cout << i << endl;
} while (++i < n);

(a) 1 and 9

(b) 0 and 9

(c) 0 and 10

(d) 1 and 10

3. What are the first and last values of i output by this loop?

n = 10;
i = 0;
do {

cout << i << endl;
} while (i++ < n);

(a) 1 and 10

(b) 0 and 10

(c) 1 and 9

(d) 0 and 9

17.6 Review Questions

1. What is the major difference between a while statement and a do-while
statement?

2. What would be output by the following segment of C++?

int i;
i = -12;
do

{
cout << i << endl;
i = i - 1;

}
while (i > 0)

3. Do questions 3 and 4 of Lesson 16 again using a do-while statement.
What would be the difference from your solution using a while state-
ment in the case where n is zero?

133

17.7 Exercises

1. Rewrite the program that you produced for exercise 1 in Lesson 16
using a do-while statement rather than a while statement.

2. Rewrite the program that you produced for exercise 2 in Lesson 16
using a do-while statement rather than a while statement.

3. Write a C++ program to implement the following requirement:

A set of examination marks expressed as percentages are
to be processed by computer. Data entry is terminated by
entering a negative percentage value. As each examination
mark is entered it should be validated as being either a valid
percentage or as being a negative number. The program
should ask for the data entry to be repeated until a valid
value is entered. The program should then output the num-
ber of percentage marks entered, the average mark and how
many marks were above 40

The program should implement the loop by using a do-while loop.

134

Lesson 18

The for statement

Frequently in programming it is necessary to execute a statement a fixed
number of times or as a control variable takes a sequence of values. For
example consider the following use of a while statement to output the num-
bers 1 to 10. In this case the integer variable i is used to control the number
of times the loop is executed.

i = 1;
while (i <= 10)

{
cout << i << endl;
i++;

}

In such a while loop three processes may be distinguished:

1. Initialisation - initialise the control variable i (i = 1).

2. Test expression - evaluate the truth value of an expression (i <= 10).

3. Update expression - update the value of the control variable before
executing the loop again (i++).

These concepts are used in the for statement which is designed for
the case where a loop is to be executed starting from an initial value of
some control variable and looping until the control variable satisfies some
condition, meanwhile updating the value of the control variable each time
round the loop.

The general form of the for statement is:

for (initialise ; test ; update)
statement

which executes the initialise statement when the for statement is first en-
tered, the test expression is then evaluated and if true the loop statement

135

is executed followed by the update statement. The cycle of (test;execute-
statement;update) is then continued until the test expression evaluates to
false, control then passes to the next statement in the program.

18.1 Example for statement: Print 10 integers

The equivalent for statement to the while statement in section 16.1 is

for (i = 1; i <= 10; i++)
cout << i << endl;

nl for.cpp

which initially sets i to 1, i is then compared with 10, if it is less than or
equal to 10 then the statement to output i is executed, i is then incremented
by 1 and the condition i <= 10 is again tested. Eventually i reaches the
value 10, this value is printed and i is incremented to 11. Consequently on
the next test of the condition the condition evaluates to false and hence
exit is made from the loop.

18.2 Example for statement: Print table of sine
function

The following loop tabulates the sin function from x = 0.0 to x = 1.6 in
steps of 0.1.

int i;
float x;
for (i = 0; i <= 16; i++)

{
x = 0.1 * i;
cout << x << " " << sin(x) << endl;

}

sin 3.cpp

Note how an integer variable i is used to control the loop while inside the
loop the corresponding value of x is calculated as a function of i. This is
preferable to the following:

float x;
for (x = 0.0; x <= 1.6; x += 0.1)

cout << x << " " << sin(x) << endl;

136

The problem with the above is that floating point variables are not held
exactly, thus 0.1 might be represented by something slightly larger than 0.1.
Then after continually adding 0.1 to x the final value that should be 1.6
may actually be something like 1.60001. Thus the test x <= 1.6 would fail
prematurely and the last line of the table would not be printed. This could
be corrected by making the test x <= 1.605 say.

In general it is probably best to use integer variables as control variables
in for loops.

18.3 Example Program: Student Mark Processing
(3)

The program from section 16.5 could also be modified to use the for state-
ment to control the loop. This cannot be done without changing the specifi-
cation of the input data. If the specification was changed so that the number
of students was entered before the examination marks then a for statement
could be used as follows:

void main()
{

int candno; // candidate number
int s1, cw1, s2, cw2; // candidate marks
int final1, final2; // final subject marks
int count; // number of students
int sum1, sum2; // sum accumulators
int subav1, subav2; // subject averages
int i; // for loop control variable
const float EXAMPC = 0.7,

CWPC = 0.3;
// initialise

sum1 = 0;
sum2 = 0;

// enter number of students
cout << "Enter number of students: ";
cin >> count;
for (i=0; i<count; i=i+1)

{
// enter candidate number and marks

cout << "Input candidate number and marks: ";
cin >> candno >> s1 >> cw1 >> s2 >> cw2;

// process marks
final1 = int(EXAMPC*s1+CWPC*cw1);
final2 = int(EXAMPC*s2+CWPC*cw2);
sum1 = sum1+final1;

137

sum2 = sum2+final2;
// output marks

cout << candno << " "
<< s1 << " " << cw1 << " "
<< s2 << " " << cw2 << " "
<< final1 << " " << final2
<< endl;

}
// evaluate averages

subav1 = sum1/count;
subav2 = sum2/count;

// output averages
cout << endl << "Subject1 average is " << subav1

<< endl << "Subject2 average is " << subav2
<< endl;

}

exam 3.cpp

Note that if zero or a negative number is entered for the number of
students then this program will fail, an attempted division by zero will be
encountered (why?). This could be fixed by putting in a validation check
on the number of students when this is entered by the user.

18.4 Example Program: Generation of Pythagorean
Triples

In exercise 7 at the end of Lesson 7 Pythagorean triples were introduced. A
Pythagorean triple is a set of three integers a, b and c such that a2 +b2 = c2.
Such a triple can be produced from two integers m and n, m > n as follows:

a = m2 − n2

b = 2mn

c = m2 + n2

To generate a list of Pythagorean triples m could be allowed to take values
from its minimum possible value (2) up to some maximum value entered by
the user. For each value of n from 1 up to m-1 the corresponding triple could
then be evaluated and output. An algorithmic description for this is:

enter and validate a maximum value for m.
for each value of m from 2 to maximum do

138

{
for each value of n from 1 to m-1 do

{
evaluate and print a triple.
}

}

This description uses a for loop, a looping construct that repeats the
loop statement as some control variable takes a sequence of values. Also
note that one for loop is nested inside another, this is very common. From
this description the following C++ program is easily produced:

void main()
{

int max, // maximum value of m to be used
m, n, // control variables for loops
t1, t2, t3; // pythagorean triple

// enter and validate max
do {

cout << "Enter a maximum value for m (>1): ";
cin >> max;
}

while (max < 2);
// loop on m from 2 to max

for (m=2; m <= max; m++)
{

// now loop on n from 1 to m-1
for (n=1; n < m; n++)

{
// evaluate and print triple

t1 = m*m-n*n;
t2 = 2*m*n;
t3 = m*m+n*n;
cout << t1

<< " " << t2
<< " " << t3
<< endl;

}
}

}

pyth 2.cpp

139

18.5 Summary

• The for statement is is used to implement loops which execute a fixed
number of times. This number of times must be known before the for
statement is entered.

• If the test expression in a for statement is initially false then the loop
statement will not be executed. Thus a for statement may iterate zero
or more times.

18.6 Multiple Choice Questions

1. What is the value of i after the for statement below?

n = 100;
for (i = 0; i < n; i++) {
...
}

(a) 99

(b) 100

(c) 101

2. What are the first and last values of i output by this loop?

n = 20;
for (i = 0; i < n; i++) {

cout << i << endl;
}

(a) 0 and 19

(b) 1 and 19

(c) 0 and 20

(d) 1 and 20

3. What are the first and last values of i output by this loop?

n = 15;
i = 0;
for(i = 0; i <= n; i++) {

cout << i << endl;
}

(a) 0 and 15

140

(b) 1 and 14

(c) 1 and 15

4. What is the last value of i output by this loop?

n = 27;
i = 0;
for(i = 0; i <= n; i+= 2) {

cout << i << endl;
}

(a) 25

(b) 28

(c) 27

(d) 26

18.7 Review Questions

1. What would be output by the following segment of C++?

int i;
for (i = 1; i <= 12; i *= 2)

cout << i << endl;

2. Do questions 3 and 4 of Lesson 16 again using a for statement.

3. What is printed by the following segment of C++?

int i;
for (i=1; i<20; i = i+3)

cout << i << endl;

What would happen if the i+3 in the update expression was changed
to i-3?

4. Write a for statement to output the numbers 1 to 20, each on a new
line.

5. Write a segment of C++ using a for statement which accepts n real
values entered by a user and outputs their average value. Assume n
will be greater than zero.

6. Write a segment of C++ which enters a value for n, n ≥ 0 and outputs
the value of 2n. Use a while statement first, then repeat using a
do-while statement and finally repeat using a for statement.

141

18.8 Exercises

1. Write an algorithm for a program to produce the sum of the series

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

where n is entered by the user. Then write and test the program.

Change your algorithm so that the sum of the series

1− 1
3

+
1
5
− 1

7
+ · · · 1

n

is computed. Then write and test the program. As n gets larger the
results should tend towards 0.7854 (π/4).

2. In exercise 1 of Lesson 16 you wrote a program to enter a set of numbers
and to output counts of the number of negative and positive numbers.
Change that program so that it asks the user how many numbers are
to be entered and uses a for loop.

3. In exercise 3 of Lesson 16 it was described how random integers could
be generated by the rand function. This routine can also be used to
generate random fractions in the range 0-1. Since rand() generates
an integer between 0 and RAND_MAX-1 then rand()/float(RAND_MAX)
generates a fraction in the range (0,1). If x is a random number in
the range (0,1) then 1− 2x is a random fraction in the range (-1,+1).
Start by writing a program that produces n (entered by user) pairs of
random fractions in the range (-1,+1). Use a for loop to implement
the loop.

Once this is working extend your program as follows. Treat each pair
of random values as the co-ordinates of a point (x, y) and output a
count of how many of the generated points lie inside a circle of radius
1 and centre at (0,0) i.e. x2 + y2 < 1.

If the random number generator used is reasonably uniform in its
distribution of numbers then the probability that a point lands in the
circle is the ratio of the area of the circle to the area of the 2 × 2
square centred on the origin. This ratio is π/4. Thus an estimate of
the value of π can be made from the ratio of the count of points inside
the circle to the total number of points. Hence extend your program
to output an estimate of π. This is known as a Monte Carlo method.
Run your program a few times with increasing values of n to see how
the estimate of π improves with the number of trials carried out.

4. Write an algorithm to produce an n times multiplication table (n less
than or equal to 10). For example, if n is equal to four the table should
appear as follows:

142

1 2 3 4
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16

Convert your algorithm into a program. Use nested for loops and pay
attention to formatting your output so that it is displayed neatly.

143

Lesson 19

Streams and External Files

So far all input and output has been done by obtaining data from the input
stream cin and sending output to the output stream cout. These streams
have been connected to the keyboard and screen respectively. There are
many situations when these facilities are not sufficient. For example:

1. When the amount of data to be entered to a program is very large or
when a program is to be executed at a later date with the same data.
This may happen while developing and testing a program with a set
of test data.

2. When the data for a program has been produced by another computer
program.

3. When a permanent record of the output of a program is required.

In all these cases External Files are required. Thus if a program re-
quires a significant amount of data to be entered then the data can be
entered on a file using a text editor and this file used as the input medium
while developing and testing the program. Similarly output can be sent to
a file so that a permanent record of results is obtained.

19.1 Streams

In C++ data is written to and from streams. A stream is :

• a sequence of characters

• connected to a device or to a (disk) file

• referred to by name

The streams cin and cout which are connected to the keyboard and the
screen respectively have already been considered. When using these streams
the file iostream.h must be included in the program.

144

C++ allows other streams to be set up. These streams must be declared
just as identifiers are declared. Thus streams that are to be used for input
are declared as having the type ifstream and those that are used for output
are declared as having the type ofstream. Once a stream has been declared
it must be connected to an external file.

If streams are going to be used the file fstream.h must be included in
the program.

19.2 Connecting Streams to External Files

The stream must first be declared. The names for streams follow the same
rules of formation as identifiers. Thus the following declaration declares the
stream ins for input and the stream outs for output:

ifstream ins; // input stream
ofstream outs; // output stream

To connect these streams to the appropriate external files the open func-
tion is used. The open function is a member function of the stream class
and to connect the stream ins to a file indata.dat the following statement
is used:

ins.open("indata.dat");

The general form for a stream with identifier streamname and a file with
name filename is:

streamname.open(filename);

If the file indata.dat did not exist or could not be found then this
open function will fail. Failure of the open function is tested by using the
the function streamname.fail() which returns true if the open function
failed. When using the open function failure should always be tested for as
in the following example:

ifstream ins;
ins.open("indata.dat");
if (ins.fail())

{
cout << "Error opening file indata.dat"

<< endl;
return 1;

}

In this example it is assumed that the failure occurs within the main()
program. This means that the return statement exits the main program

145

and hence the program is terminated. The value 1 that is returned indicates
to the operating system that the program has terminated with an error
condition. As the main program now returns a value it must be declared as
having the type int rather than void.

Having connected the external files to the streams any input/output
from/to these streams will then be from/to the connected files.

In the following example two streams are declared, one for input called
ins and another for output called outs. These streams are then connected
to files with names indata.dat and results.dat respectively by:

int main()
{
ifstream ins;
ofstream outs;
ins.open("indata.dat");
if (ins.fail())
{

cout << "Error opening indata.dat"
<< endl;

return 1;
}

outs.open("results.dat");
if (outs.fail())
{

cout << "Error opening results.dat"
<< endl;

return 1;
}

.

.

All access to these files now uses the declared stream names ins and outs
and the input/output operators << and >>. Input/output manipulators can
also be used on the output stream.

Thus a data item is entered from the stream ins by:

ins >> x;

and results are output to the stream outs by:

outs << "Result is " << setw(6) << count << endl;

19.3 Testing for end-of-file

In the above the functions open and fail have been attached to a stream
name. Another function that can be attached to a stream name is the end-

146

of-file condition, eof. This condition is set true when an an attempt is made
to read beyond the end of a file, otherwise it is set to false. Unlike some other
languages the end-of-file character is actually entered and the eof function
returns true when it is entered. For example to read values from a file and
evaluate their average then the following code could be used:

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>

int main()
{

int n;
float x, sum, average;
ifstream ins; // input stream
ofstream outs; // output stream
ins.open("indata.dat");

// open files, exit program if fail
if (ins.fail())

{
cout << "Can’t open indata.dat" <<endl;
return 1; //exit with code 1 for failure

}
outs.open("results.dat");
if (outs.fail())

{
cout << "Can’t open results.dat" << endl;
return 1; //exit with code 1 for failure

}

// Initialise and let user know something is happening
sum = 0.0;
n = 0;
cout << "Reading input file " << endl;

// read from file, accumulate sum and output average
// to output file.

ins >> x; // if file was empty then eof would now be true
while (!ins.eof())

{
sum += x;
n++;
ins >> x;

}

147

average = sum / n;
cout << "Writing results to file " << endl;
outs << "The average of " << n << " numbers is "

<< setprecision(2)
<< average << endl;

ins.close(); // Close all files - GOOD PRACTICE
outs.close();
return 0; // indicate success

}

sumfile.cpp

Note that at the end the streams ins and outs were closed. While some
operating systems will do this automatically when your program terminates
it is good practice to always close files before exiting a program. If this is
not done then sometimes not all of the output is written to the file.

If the program was to be run again with data from a different file then
the only way this could be done would be to edit the program above and
replace each occurrence of indata.dat with the name of the other input
file. This is obviously inconvenient and it is much better to allow the user to
enter the file name at run-time. However this topic is delayed until Lesson 23
when further consideration has been given to the representation of arbitrary
strings within a program.

19.4 Summary

• To send data to/from an external file the file must be connected to a
stream.

• A stream is a sequence of characters and is connected to a device or a
file.

• If streams other than the standard input streams cin and cout are
used then the file fstream.h must be included in the program.

• Streams must be declared. Input streams are declared as having type
ifstream and output streams as having type ofstream.

• A file is connected to a stream using the open(filename) member
function of the stream. Failure of the open(filename) function is tested
by the fail() member function of the stream. End of file condition
is tested by the eof() member function of the stream. A stream (and
the associated file) is closed by using the close() member function of
the stream.

148

19.5 Review Questions

1. What is the purpose of the open function of a stream?

2. Write a declaration for an input stream and connect it to a file called
‘ datain.txt’. How would you read a real value from this stream into
a float variable?

3. Write a declaration for an output stream and connect it to a file called
‘results’. Assuming that there existed float variables x and y how
would you write the values of x and y to the file results together with
a message ‘ The values of x and y are ’?

19.6 Exercises

1. In question 2 of Lesson 18 you wrote a program which input a series
of numbers and output counts of the number of positive and negative
numbers. Amend this program so that it takes data from a file (make
up a sample file) and terminates on the end of file condition. Write
the output from the program to another file.

149

Lesson 20

Top-down design using
Functions

In Lesson 5 a program was produced which entered the hours worked and
an hourly rate of pay for an employee and output the employee’s total wage.
This could be expanded so that a user could enter this data for several
employees in turn and get their wages output. A suitable algorithmic de-
scription for such a program might be:

repeat
enter hours worked and hourly rate.
produce wage.
prompt user ‘any more data?’
read reply

until reply is no

Since an algorithm has already been produced which outputs the wage
given the hours worked and the hourly rate the description of this could
now be used as the expansion of produce wage. This re-use of an algorithm
from a previous program saves time in developing an algorithm again and
if the algorithm has been previously tested and verified to be correct also
reduces the chances of error. The best mechanism for this re-use of an
algorithm is to incorporate it into a function. The function is given a name
and is supplied with the input parameters (or arguments) of the problem
and returns the results as output parameters. Thus the description for the
calculation of the wage could be placed in a function called, say, calcwage.
This function would take the hours worked and the hourly rate as input
parameters and would return the wage as output. This function is then
called to produce the wage when values are available for the hours worked
and the hourly rate. The algorithm above could then be written:

repeat
Enter hours worked and hourly rate.

150

Call the function calcwage(hours,rate,wage).
print out wage.
prompt user ‘any more data?’
read reply.

until reply is no.

Apart from its use in this program the function calcwage might possibly
be used in other programs in the future which required the calculation of
wages. Another advantage of the above approach is that if the rules for
calculating wages are changed then only the function calcwage need be
changed. Thus if the solution of a problem has been neatly encapsulated into
a function which has been comprehensively tested and debugged then it can
be incorporated into subsequent programs. This obviously saves much work
and removes some sources of error. Ultimately everyone in an organisation
could use this function in their programs without even having to understand
how to actually solve the problem themselves.

20.1 The need for functions

A rationale for the use of functions has been given above. Basically they save
work in that having solved a problem once it need not be solved again if there
exists a function to solve the problem given the particular parameters for this
instance of the problem. In addition the function can be comprehensively
tested and hence a possible source of error is eliminated in future programs.
These reasons are now expanded upon:

1. When solving large problems it is usually necessary to split the prob-
lem down into a series of sub-problems, which in turn may be split
into further sub-problems etc. This is usually called a top-down ap-
proach. This process continues until problems become of such a size
that they can be solved by a single programmer. This top-down ap-
proach is essential if the work has to be shared out between a team of
programmers, each programmer ending up with a specification for a
part of the system which is to be written as a function (or functions).
While writing a single function the programmer is able to concentrate
on the solution of this one problem only and is thus more likely to be
able to solve the problem and make less errors. This function can now
be tested on its own for correctness.

2. In a particular organisation or industry it may be found that in carry-
ing out the top-down approach in 1 some tasks occur very frequently.
For example the operation of sorting a file of data into some order
occurs frequently in data-processing applications. Thus a library of
such commonly used functions can be built up and re-used in many

151

different programs. This obviously saves much work and cuts down
errors if such functions have already been well tested.

3. There are many very specialised problem areas, not every program-
mer can know every area. For example many programmers working in
scientific applications will frequently use mathematical function rou-
tines like sine and cosine, but would have no idea how to write such
routines. Similarly a programmer working in commercial applications
might know very little about how an efficient sorting routine can be
implemented. However a specialist can write such routines, place them
in a public library of functions and all programmers can benefit from
this expertise by being able to use these efficient and well tested func-
tions.

Before looking at how functions are implemented in C++ the use of the
mathematical function routines supplied in C++ is considered.

20.2 The mathematical function library in C++

The functions sin and fabs have already been used in programs in previous
Lessons. For example in section 16.3 the statement

cout << endl << " " << degree << " "
<< sin(radian);

occurred. This statement used sin(radian) as a call of the C++ function
with the name sin which returns as its value the sine of the angle (in radians)
which is given as its input parameter (in this case the variable radian). In
this use of a function there are no output parameters, the single result that
the function produces is returned to the calling program via the name of the
function.

Some of the mathematical functions available in the C++ mathematics
library are listed below.

152

acos(x) inverse cosine, -1 ≤ x ≤ +1, returns value
in radians in range 0 to π

asin(x) inverse sine, -1 ≤ x ≤ +1, returns value
in radians in range 0 to π

atan(x) inverse tangent, returns value in radians
in range -π/2 to π/2

cos(x) returns cosine of x, x in radians
sin(x) returns sine of x, x in radians
tan(x) returns tangent of x, x in radians
exp(x) exponential function, e to power x
log(x) natural log of x (base e), x > 0
sqrt(x) square root of x, x ≥ 0
fabs(x) absolute value of x
floor(x) largest integer not greater than x
ceil(x) smallest integer not less than x

In all these functions the parameter x is a floating point value. The x is
used as a formal parameter, that is it is used to denote that a parameter
is required and to allow the effect of the function to be described. When
the function is called then this formal parameter is replaced by an actual
parameter. The actual parameter can be a constant, a variable or an
expression. An expression may include a call of another function.

These functions are called by quoting their name followed by the ac-
tual parameter enclosed in rounded brackets, for example, exp(x+1). The
function call can then be used anywhere in an expression that an ordinary
variable may be used. Hence the following examples:

y = sin(3.14159);
z = cos(a) + sin(a);
factor = sin(theta)/(sin(delta) - sin(delta-theta));
theta = acos(1.0/sqrt(1 - x*x));
if (sin(x) > 0.7071)

cout << "Angle is greater than 45 degrees";
cout << "The value is " << exp(-a*t)*sin(a*t);

The file math.h must be included in any program that is going to use
any functions from this library. math.h also defines some constants which
may be used. For example M_PI can be used for π and M_E can be used for
e.

20.3 Summary

• The top-down approach to program design splits the initial problem
into several sub-problems which in turn can be further sub-divided.
Once a sub-problem is simple enough to solve then it can be imple-
mented as a function.

153

• A function should be completely self-contained. That is it should com-
municate with the calling program only via supplied input parameters
and output parameters. The user of a function should not have to
know any details of how the function is implemented.

• Functions encourage the re-use of code and can encapsulate knowledge
and techniques of which the user has no knowledge.

20.4 Review Questions

1. Why are functions used?

2. What role do the parameters of a function play?

20.5 Exercises

1. Each competitor in a race is started separately. The start and finish
time for each competitor is noted in hours, minutes and seconds. The
number of competitors is available as is the distance of the race in
miles. Design an algorithm which will initially enter the number of
competitors and the distance of the race and will then enter for each
competitor a competitor number together with the competitor’s start
and finish times. The competitor’s elapsed time should then be output
in minutes and seconds together with the average speed in miles per
hour. It is desirable that the start and finish times should be validated
as being legal times in the twenty four hour clock. In designing your
algorithm identify at the initial stage which tasks could be carried
out by using functions. Do not expand the functions any further but
specify what they should do and also specify their input parameters
and output parameters.

154

Lesson 21

Introduction to User-defined
functions in C++

C++ allows programmers to define their own functions. For example the
following is a definition of a function which given the co-ordinates of a point
(x,y) will return its distance from the origin.

float distance(float x, float y)
// Returns the distance of (x, y) from origin

{
float dist; //local variable
dist = sqrt(x * x + y * y);
return dist;

}

dist.cpp

This function has two input parameters, real values x and y, and returns
the distance of the point (x,y) from the origin. In the function a local
variable dist is used to temporarily hold the calculated value inside the
function.

The general form of a function definition in C++ is as follows:

function-type function-name(parameter-list)
{

local-definitions;
function-implementation;

}

• If the function returns a value then the type of that value must be
specified in function-type. For the moment this could be int, float
or char. If the function does not return a value then the function-type
must be void.

155

• The function-name follows the same rules of composition as identifiers.

• The parameter-list lists the formal parameters of the function together
with their types.

• The local-definitions are definitions of variables that are used in the
function-implementation. These variables have no meaning outside
the function.

• The function-implementation consists of C++ executable statements
that implement the effect of the function.

21.1 Functions with no parameters

Functions with no parameters are of limited use. Usually they will not return
a value but carry out some operation. For example consider the following
function which skips three lines on output.

void skipthree(void)
// skips three lines on output
{
cout << endl << endl << endl;

}

skip3.cpp

Note that the function-type has been given as void, this tells the compiler
that this function does not return any value. Because the function does not
take any parameters the parameter-list is empty, this is indicated by the
void parameter-list. No local variables are required by this function and the
function implementation only requires the sending of three successive end of
line characters to the output stream cout. Note the introductory comment
that describes what the function does. All functions should include this
information as minimal comment.

Since this function does not return a value it cannot be used in an ex-
pression and is called by treating it as a statement as follows:

skipthree();

Even though there are no parameters the empty parameter list () must be
inserted.

When a function is called the C++ compiler must insert appropriate
instructions into the object code to arrange to pass the actual parameter
values to the function code and to obtain any values returned by the func-
tion. To do this correctly the compiler must know the types of all parameters

156

and the type of any return value. Thus before processing the call of a func-
tion it must already know how the function is defined. This can be done by
defining any functions that are used in the main program before the main
program, for example the function skipthree could be incorporated in a
program as follows:

#include <iostream.h>

void skipthree(void)
// Function to skip three lines
{

cout << endl << endl << endl;
}

void main()
{

int;
float;
cout << "Title Line 1";
skipthree();
cout << "Title Line 2";

.

.
}

However this has disadvantages, namely:

• The main program tends to convey much more information of use
in understanding the program than do individual functions. So it is
better if the main program comes first. However this means that the
compiler meets the call of a function before it meets the definition of
the function.

• If using functions from a library of functions then the main program is
linked with the pre-compiled object code of the functions. Thus while
compiling the main program on its own the compiler has no knowledge
of the function definitions.

The way round both the problems above is to use Function proto-
types. A function prototype supplies information about the return type of
a function and the types of its parameters. This function prototype is then
placed before the main program that uses the function. The full function
definition is then placed after the main program or may be contained in
a separate file that is compiled separately and linked to the main program
later. The function prototype is merely a copy of the function heading. Thus
the function prototype for the function skipthree is:

157

void skipthree(void);

which would be included in the program file as follows:

#include <iostream.h>

void skipthree(void); // function prototype

void main()
{

int;
float;
cout << "Title Line 1";
skipthree();
cout << "Title Line 2";

.

.
}

// Now the function definition
void skipthree(void)

// Function to skip three lines
{

cout << endl << endl << endl;
}

skip3.cpp

In fact when using functions from the stream libraries and the mathe-
matical libraries prototypes are required for these functions. This is handled
by including the files iostream.h and math.h which, among other things,
contain the function prototypes.

21.2 Functions with parameters and no return value

The function of the previous section is not very useful, what if four lines
were to be skipped, or two lines? It would be much more useful if it was
possible to tell the function how many lines to skip. That is the function
should have an input parameter which indicates how many lines should be
skipped.

The function skipthree() is now changed to the function skip which
has a parameter n indicating how many lines have to be skipped as follows:

void skip(int n)

158

// Function skips n lines on output
{

int i; // a local variable to this function
// now loop n times

for (i = 0; i < n; i++)
cout << endl;

}

skipn.cpp

As before this function does not return a value hence it is declared as
having type void. It now takes an integer parameter n which indicates
the number of lines to be skipped. The parameter list then consists of a
type and a name for this formal parameter. Inside the body of the function
(enclosed in {}) a loop control variable i is declared. This variable is a local
variable to the function. A local variable defined within the body of the
function has no meaning, or value, except within the body of the function.
It can use an identifier name that is used elsewhere in the program without
there being any confusion with that variable. Thus changing the value of
the local variable i in the function skip will not affect the value of any other
variable i used elsewhere in the program. Similarly changing the value of
a variable i used elsewhere in the program will not affect the value of the
local variable i in skip.

The function is called in the same manner as skipthree() above, but
a value must be given for the parameter n. Thus all the following calls are
acceptable:

void main()
{

int m = 6, n = 3;
...............;
skip(m);
.......;
skip(m + n);
............;
skip(4);
.......;

}

however the call:

skip (4.0);

would not be acceptable because the actual parameter type must match
the formal parameter type given in the definition of the function.

159

In writing the function prototype for a function with parameters it is not
necessary to detail the formal names given to the parameters of the function,
only their types. Thus a suitable function prototype for the parameterised
version of skip would be:

void skip(int); // function prototype

21.3 Functions that return values

One of the most useful forms of function is one that returns a value that
is a function of its parameters. In this case the type given to the function
is that of the value to be returned. Thus consider the function, previously
considered, which given the co-ordinates of a point (x,y) will return its
distance from the origin:

float distance(float x, float y)
// Returns the distance of (x, y) from origin

{
float dist; //local variable
dist = sqrt(x * x + y * y);
return dist;

}

dist.cpp

The function prototype for this function is:

float distance(float, float); // function prototype

This function introduces several new features. Note the following:

• The function has been given the type float because it is going to
return a float value.

• The parameter-list now has two parameters, namely, x and y. Each
parameter is declared by giving its type and name and successive pa-
rameter declarations are separated by a comma.

• A local variable dist has been declared to temporarily hold the cal-
culated distance.

• Because this function returns a value it includes a return statement
which returns the value. In a statement return value the value may
be a constant, a variable or an expression. Hence the use of the local
variable dist was not essential since the return statement could have
been written:

160

return sqrt(x*x + y*y);

When the function is called the formal parameters x and y are replaced
by actual parameters of type float and in the same order, i.e. the x co-
ordinate first. Since the function returns a value it can only be used in an
expression.

Hence the following examples of the use of the above function in a pro-
gram in which it is declared:

float a, b, c, d, x, y;
a = 3.0;
b = 4.4;
c = 5.1;
d = 2.6;

x = distance(a, b);
y = distance(c, d);

if (distance(4.1, 6.7) > distance(x, y))
cout << "Message 1" << endl;

A function may have several return statements. This is illustrated in
the following function which implements the algorithm for evaluating the
square root previously considered.

float mysqrt(float x)
// Function returns square root of x.
// If x is negative it returns zero.

{
const float tol = 1.0e-7; // 7 significant figures
float xold, xnew; // local variables
if (x <= 0.0)
return 0.0; // covers -ve and zero case

else
{

xold = x; // x as first approx
xnew = 0.5 * (xold + x / xold); // better approx
while (fabs((xold-xnew)/xnew) > tol)

{
xold = xnew;
xnew = 0.5 * (xold + x / xold);

}
return xnew; // must return float value
}

} // end mysqrt

161

mysqrt.cpp

If the function has type void then it must not return a value. If a void
function does return a value then most compilers will issue some form of
warning message that a return value is not expected.

21.4 Example function: sum of squares of integers

The following function returns the sum of the squares of the first n integers
when it is called with parameter n.

// This function returns the sum of squares of the
// first n integers
int sumsq(int n)

{
int sum = 0;
int i;
for (i = 1; i <= n; i++)

sum += i * i;

return sum;
} // End of sumsq

sumsq.cpp

A typical use of sumsq is:

float sumsquare;
int number;
cout << "Enter number (>= 0): ";
cin >> number;
sumsquare = sumsq(number);

21.5 Example Function: Raising to the power

This function returns the value of its first parameter raised to the power of
its second parameter. The second parameter is an integer, but may be 0 or
negative.

float power(float x, int n)
{

float product = 1.0;
int absn;
int i;

162

if (n == 0)
return 1.0;

else
{
absn = int(fabs(n));
for (i = 1; i <= absn; i++)

product *= x;
if (n < 0)

return 1.0 / product;
else

return product;
}

} // end of power

power.cpp

A typical use of the power function is shown below

float x, y;
int p;
cout << "Enter a float and an integer: ";
cin >> x >> p;
y = power(x, p);
y = power(x + y, 3);

functest.cpp

21.6 Call-by-value parameters

Suppose the function power above is now amended to include the statement

n++;

just before the final closing } and the following statements are executed:

p = 4;
y = power(x, p);
cout << p;

What would be printed out for the value of p? In fact instead of the value
5 that you might expect p would still have the value 4. This is because the
parameter has been passed by value. This means that when the function is
called a copy of the value of the actual parameter used in the call is passed
across to the memory space of the function. Anything that happens inside
the function to this copy of the value of the parameter cannot affect the

163

original actual parameter. All the examples that have been considered have
used call-by-value parameters. This is because all the parameters used have
been input parameters. To make a parameter call-by-value it is specified in
the parameter list by giving its type followed by its name.

Thus if a parameter is only to be used for passing information into a
function and does not have to be returned or passed back from the function
then the formal parameter representing that parameter should be call-by-
value. Note also that since the function cannot change the value of a call-
by-value parameter in the calling program strange side effects of calling a
function are avoided.

21.7 Summary

• A C++ function can return a value. The function must be declared
to have the same type as this value. If the function does not return a
value then it must be given the type void.

• Information is passed into a function via the parameter-list. Each
parameter must be given a type. If not declared to be otherwise then
parameters are treated as value parameters

• If a parameter is a value parameter then the function operates on a
copy of the value of the actual parameter hence the value of the actual
parameter cannot be changed by the function.

• A function prototype provides information to the compiler about the
return type of a function and the types of its parameters. The function
prototype must appear in the program before the function is used.

• Any variable declared inside a function is local to that function and
has existence and meaning only inside the function. Hence it can use
an identifier already used in the main program or in any other function
without any confusion with that identifier.

21.8 Review Questions

1. How is information supplied as input to a function? How can infor-
mation be conveyed back to the calling program?

2. What would the following function do?

void example(int n)
{
int i;
for (i=0; i<n; i++)

164

cout << ’*’;
cout << endl;

}

How would you call this function in a program? How would you use
this function in producing the following output on the screen?

*
**

3. What would be the output from the following programs?

a)

void change(void)
{

int x;
x = 1;

}
void main()
{

int x;
x = 0;
change();
cout << x << endl;

}

b)

void change(int x)
{
x = 1;

}
void main()

{
int x;
x = 0;
change(x);
cout << x << endl;

}

4. Write a function prototype for a function that takes two parameters of
type float and returns true (1) if the first parameter is greater than
the second and otherwise returns false (0).

165

5. Write a function prototype for a function that takes two parameters
of type int and returns true if these two integers are a valid value for
a sum of money in pounds and pence. If not valid then false should
be returned.

6. A function named ex1 has a local variable named i and another func-
tion ex2 has a local variable named i. These two functions are used
together with a main program which has a variable named i. Assum-
ing that there are no other errors in the program will this program
compile correctly? Will it execute correctly without any run-time er-
rors?

21.9 Exercises

1. Write a function which draws a line of n asterisks, n being passed as a
parameter to the function. Write a driver program (a program that
calls and tests the function) which uses the function to output an m×
n block of asterisks, m and n entered by the user.

2. Extend the function of the previous exercise so that it prints a line
of n asterisks starting in column m. It should take two parameters
m and n. If the values of m and n are such that the line of asterisks
would extend beyond column 80 then the function should return false
and print nothing, otherwise it should output true and print the line
of asterisks. Amend your driver program so that it uses the function
return value to terminate execution with an error message if m and n
are such that there would be line overflow.

Think carefully about the test data you would use to test the function.

3. Write a function which converts a sum of money given as an integer
number of pence into a floating point value representing the equivalent
number of pounds. For example 365 pence would be 3.65 pounds.

166

Lesson 22

Further User-defined
functions in C++

In Lesson 21 all function parameters were input-only parameters and thus
were implemented as call-by value parameters. The only method used to
return information to the calling program was by the function returning a
single value. Frequently it is necessary to write functions that return more
than one value. For example a function that took a sum of money in pence
might have to return the equivalent sum in pounds and pence.

To allow information to be returned to the calling program C++ allows
information to be returned by parameters. As explained in Lesson 21 this
cannot be done by the use of call-by-value parameters. To allow a pa-
rameter to return a value it must be declared to be a call-by-reference
parameter.

22.1 Call-by-reference parameters

Values cannot be returned to the calling program via call-by-value param-
eters because the function only operates on a copy of the value of the pa-
rameters, not on the actual parameter itself. If it is required to return a
value by a parameter then the address of the actual parameter used in the
function call must be passed to the function. The function can then use
this address to access the actual parameter in its own space in the calling
program and change it if required. Thus what we are passing is a reference
to the parameter. Hence call-by-reference parameters.

To indicate that a parameter is called by reference an & is placed after
the type in the parameter list. Any change that is made to that parameter
in the function body will then be reflected in its value in the calling program.

For example consider the following function to evaluate the solution of
a quadratic equation:

// solves the quadratic equation a*x*x+b*x+c = 0.

167

// If the roots are real then the roots are
// returned in two parameters root1 and root2 and
// the function returns true, if they are complex
// then the function returns false.

bool quadsolve(float a, // IN coefficient
float b, // IN coefficient
float c, // IN coefficient
float& root1, // OUT root
float& root2) // OUT root

{
float disc; // local variable
disc = b * b - 4 * a * c;
if (disc < 0.0)
return false;

else
{

root1 = (-b + sqrt(disc))/(2 * a);
root2 = (-b - sqrt(disc))/(2 * a);
return true;

}
}

quadrat.cpp

Note that the roots, which are output parameters, have been declared
to be reference parameters, while the coefficients are input parameters and
hence are declared to be value parameters. The function prototype would
have the following form:

int quadsolve(float, float, float, float&, float&);

This might be called in a program as follows:

float c1, c2, c3;
float r1, r2;

.

.
if (quadsolve(c1, c2, c3, r1, r2))

cout << "Roots are " << r1 << " and " << r2 << endl;
else

cout << "Complex Roots" << endl;

quadrat.cpp

168

Note how the return value has been used to discriminate between the
situation where the roots are real and are found in the two output parameters
and the case where the roots are complex and no values for the roots are
returned.

22.2 Example Program: Invoice Processing

Details of an invoice are available as follows:

The number of items on the invoice - n
For each item

an item code (6 digits), a quantity and
a unit cost (pounds,pence)

Thus a typical set of input values for an invoice might be:

3
161432 5 6 50
543289 10 2 25
876234 2 10 75

indicating that there are three items on the invoice, the first item having an
item code of 161432, an order quantity of 5 and a unit price of six pounds
fifty pence. Assume that the days date will also be entered.

Write a C++ program to enter details of such an invoice and to output
an invoice which indicates the total cost of each item and the total cost of
the invoice together with full details. The above details might produce an
invoice as follows:

Invoice date: 10/6/96

Item quantity unit price total price

161432 5 6.50 32.50
543289 10 2.25 22.50
876234 2 10.75 21.50

Total 76.50

A first attempt at an algorithm might be:

initialise.
enter date.
enter number of items into n.
output headings.
for n items do

169

{
enter a record.
calculate total cost of item.
accumulate total invoice cost.
write line of invoice.

}
output total cost.

Assume that there are four programmers available to implement this
program. There are four major operations inside the for loop hence each
programmer could be given one operation to implement. The best way to
do this is to use a function for each operation. Each programmer can then
be given a precise definition of a function.

For example consider the operation enter a record. This function
must read in the integer quantities item number, quantity and unit price
in pounds and pence. Hence it has no input parameters and four output
parameters. A definition of the function could then be written as follows:

Function name: dataentry
Operation: Enter a record
Description: Enters four integers from the current

input line and returns their values.
Parameters: Output parameter int itemno

Output parameter int quantity
Output parameter int unitpounds
Output parameter int unitpence

Similarly the other functions could be specified as follows:

Function name : calccost
Operation : Calculates the cost for a single item.
Description : Given the unit price of an item in

pounds and pence and the quantity of
the item calculates the total cost in
pounds and pence.

Parameters : Input parameter int quantity
input parameter int unitpounds
input parameter int unitpence
output parameter int totalpound
output parameter int totalpence

Function name : acctotal
Operation : Accumulates the total cost of invoice
Description : Given current total invoice cost and

the total cost of an invoice item
calculates the new total invoice cost.

170

Parameters : input parameter int totalpound
input parameter int totalpence
input & output parameter int invpound
input & output parameter int invpence

Function name : writeline
Operation : Writes a line of the invoice.
Description : Given the item reference number, the

quantity, the unit price and total
price of an item outputs a line of
the invoice.

Parameters : input parameter int itemno
input parameter int quantity
input parameter int unitpounds
input parameter int unitpence
input parameter int totalpound
input parameter int totalpence

In terms of these functions the main program could be written as follows:

void main()
{

int i, // control variable
n, // number of items
itemno, // item reference number
quantity, // quantity of item
unitpounds,
unitpence, // unit item price
totalpound,
totalpence, // total item price
invpound,
invpence; // total invoice price
// initialise

invpound = 0; // total value of invoice has to be
invpence = 0; // set to zero initially

// Enter number of items
cout << "Enter number of items on invoice: ";
cin >> n;

// Headings
cout << " Item quantity unit price total price"

<< endl << endl;
// For n items

for (i=1; i<=n; i++)
{
dataentry(itemno, quantity, unitpounds, unitpence);

171

calccost(quantity, unitpounds, unitpence, totalpound,
totalpence);

acctotal(totalpound, totalpence, invpound, invpence);
writeline(itemno, quantity, unitpounds, unitpence,

totalpound, totalpence);
}
// write total line

cout << " Total "
<< invpound
<< "."
<< invpence << endl;

}

invoice.cpp

Using the function specifications above the functions can now be written
and tested separately. For example calccost could be written as follows:

void calccost(int q, int ul, int up,
int& totl, int& totp)

// Calculates the quantity q times the unit cost in
// pounds and pence in ul and up and places the
// result in pounds and pence in totl and totp

{
int p;
p = q * up;
totp = p % 100;
totl = q * ul + p/100;

}

calccost.cpp

To test this function on its own a driver program would have to be
written. A driver program is a simple program that allows the programmer
to enter values for the parameters of the function to be tested and outputs
the results. A suitable driver program to test the above function could be:

// IEA 1996
// Driver program to test calccost

#include <iostream.h>

// function prototype

172

void calccost(int, int, int, int&, int&);

void main()
{

int quant, unitl, unitp, totall, totalp;
// stop on negative quantity

cout << "Enter quantity: ";
cin >> quant;
while (quant >= 0)

{
cout << "Enter unit cost (pounds pence): ";
cin >> unitl >> unitp;
calccost(quant, unitl, unitp, totall, totalp);
cout << endl

<< quant << " times "
<< unitl << " pounds "
<< unitp << " pence "
<< " is "
<< totall << " pounds "
<< totalp << " pence ";

cout << endl << "Enter quantity: ";
cin >> quant;

}
}

// function definition here

calccost.cpp

When testing functions try to use one example of each of the cases
that can occur. For example using the above driver program to show that
calccost works for 7 times 1.10 is not a complete test since it does not
generate any ‘carry’ from the pence to the pounds. An additional test on
say 6 times 1.73 checks that the carry works. Choosing a set of test data to
adequately validate a function requires much thought.

22.3 Summary

• Information is passed back from the function via reference parameters
in the parameter-list. A parameter is declared to be a reference pa-
rameter by appending & to its type. In this case the address of the
actual parameter is passed to the function and the function uses this
address to access the actual parameter value and can change the value.
Hence information can be passed back to the calling program.

173

22.4 Review Questions

1. How is information supplied as input to a function? How can infor-
mation be conveyed back to the calling program?

2. What would be the output from the following program?

void change(int& y)
{
y = 1;

}
void main()

{
int x;
x = 0;
change(x);
cout << x << endl;

}

3. Write a function prototype for a function that takes two parameters
of type int and returns true if these two integers are a valid value
for a sum of money in pounds and pence. If they are valid then the
value of the sum of money should also be returned in pence (without
affecting the input value of pence). If not valid then false should be
returned.

22.5 Exercises

1. Write a function

void floattopp(float q, int& L, int& P)

which converts the sum of money q in pounds into L pounds and P
pence where the pence are correctly rounded. Thus if q was 24.5678
then L should be set to 24 and P should be set to 57. Remember
that when assigning a real to an integer the real is truncated. Thus
to round a real to the nearest integer add 0.5 before assigning to the
integer.

Write a simple driver program to test the function. Think carefully
about the boundary conditions.

2. It is required to print out a table of mortgage repayments for a range
of years of repayment and a range of rates of interest. Write an algo-
rithm to produce a table of the monthly repayments on a mortgage
of 40,000 pounds repayable over 15, 16, 17,. . . , 30 years with interest

174

rates of 3, 4, 5,. . . , 10 per cent. Assume that the actual repayment
will be produced by a function which will take as input parameters the
principle P, the repayment time n in years and the rate of interest r
as a percentage rate and will return the monthly repayment in pounds
and pence.

Transform your algorithm into a C++ program. Write a function pro-
totype for the repayment calculation function and write the function
itself as a function stub. That is a function that does not perform
the correct calculation but delivers values that are sufficient to test
the rest of the program. In this case it should return values of zero for
the pounds and pence of the monthly repayment. This will allow you
to test that your program lays the table out properly.

Once you have the table layout working you can now write the function
itself. The repayment each month on a mortgage of P pounds, taken
out over n years at an interest rate of r% is given by:

repayment =
rPk12n

1200(k12n − 1)

where
k = 1 +

r

1200

In writing this function use the function power from Section 21.5. This
means you must add this function, and a suitable prototype, to your
program. Also use the function of exercise 1 above.

175

Lesson 23

Arrays

Variables in a program have values associated with them. During program
execution these values are accessed by using the identifier associated with
the variable in expressions etc. In none of the programs written so far have
very many variables been used to represent the values that were required.
Thus even though programs have been written that could handle large lists
of numbers it has not been necessary to use a separate identifier for each
number in the list. This is because in all these programs it has never been
necessary to keep a note of each number individually for later processing.
For example in summing the numbers in a list only one variable was used to
hold the current entered number which was added to the accumulated sum
and was then overwritten by the next number entered. If that value was
required again later in the program there would be no way of accessing it
because the value has now been overwritten by the later input.

If only a few values were involved a different identifier could be declared
for each variable, but now a loop could not be used to enter the values.
Using a loop and assuming that after a value has been entered and used no
further use will be made of it allows the following code to be written. This
code enters six numbers and outputs their sum:

sum = 0.0;
for (i = 0; i < 6; i++)

{
cin >> x;
sum += x;

}

This of course is easily extended to n values where n can be as large as
required. However if it was required to access the values later the above
would not be suitable. It would be possible to do it as follows by setting up
six individual variables:

float a, b, c, d, e, f;

176

and then handling each value individually as follows:

sum = 0;
cin >> a; sum += a;
cin >> b; sum += b;
cin >> c; sum += c;
cin >> d; sum += d;
cin >> e; sum += e;
cin >> f; sum += f;

which is obviously a very tedious way to program. To extend this solution so
that it would work with more than six values then more declarations would
have to be added, extra assignment statements added and the program
re-compiled. If there were 10000 values imagine the tedium of typing the
program (and making up variable names and remembering which is which)!

To get round this difficulty all high-level programming languages use the
concept of a data structure called an Array

23.1 Arrays in C++

An array is a data structure which allows a collective name to be given to a
group of elements which all have the same type. An individual element
of an array is identified by its own unique index (or subscript).

An array can be thought of as a collection of numbered boxes each con-
taining one data item. The number associated with the box is the index
of the item. To access a particular item the index of the box associated
with the item is used to access the appropriate box. The index must be
an integer and indicates the position of the element in the array. Thus the
elements of an array are ordered by the index.

23.1.1 Declaration of Arrays

An array declaration is very similar to a variable declaration. First a type
is given for the elements of the array, then an identifier for the array and,
within square brackets, the number of elements in the array. The number
of elements must be an integer.

For example data on the average temperature over the year in Britain
for each of the last 100 years could be stored in an array declared as follows:

float annual_temp[100];

This declaration will cause the compiler to allocate space for 100 consec-
utive float variables in memory. The number of elements in an array must
be fixed at compile time. It is best to make the array size a constant and
then, if required, the program can be changed to handle a different size of
array by changing the value of the constant,

177

const int NE = 100;
float annual_temp[NE];

then if more records come to light it is easy to amend the program to cope
with more values by changing the value of NE. This works because the com-
piler knows the value of the constant NE at compile time and can allocate an
appropriate amount of space for the array. It would not work if an ordinary
variable was used for the size in the array declaration since at compile time
the compiler would not know a value for it.

23.1.2 Accessing Array Elements

Given the declaration above of a 100 element array the compiler reserves
space for 100 consecutive floating point values and accesses these values
using an index/subscript that takes values from 0 to 99. The first element
in an array in C++ always has the index 0, and if the array has n elements
the last element will have the index n-1.

An array element is accessed by writing the identifier of the array
followed by the subscript in square brackets. Thus to set the 15th element
of the array above to 1.5 the following assignment is used:

annual_temp[14] = 1.5;

Note that since the first element is at index 0, then the ith element is at
index i-1. Hence in the above the 15th element has index 14.

An array element can be used anywhere an identifier may be used. Here
are some examples assuming the following declarations:

const int NE = 100,
N = 50;

int i, j, count[N];
float annual_temp[NE];
float sum, av1, av2;

A value can be read into an array element directly, using cin

cin >> count[i];

The element can be increased by 5,

count[i] = count[i] + 5;

or, using the shorthand form of the assignment

count[i] += 5;

Array elements can form part of the condition for an if statement, or
indeed, for any other logical expression:

178

if (annual_temp[j] < 10.0)
cout << "It was cold this year "

<< endl;

for statements are the usual means of accessing every element in an array.
Here, the first NE elements of the array annual_temp are given values from
the input stream cin.

for (i = 0; i < NE; i++)
cin >> annual_temp[i];

The following code finds the average temperature recorded in the first
ten elements of the array.

sum = 0.0;
for (i = 0; i <10; i++)

sum += annual_temp[i];
av1 = sum / 10;

Notice that it is good practice to use named constants, rather than literal
numbers such as 10. If the program is changed to take the average of the
first 20 entries, then it all too easy to forget to change a 10 to 20. If a const
is used consistently, then changing its value will be all that is necessary.

For example, the following example finds the average of the last k entries
in the array. k could either be a variable, or a declared constant. Observe
that a change in the value of k will still calculate the correct average (pro-
vided k<=NE).

sum = 0.0;
for (i = NE - k; i < NE; i++)

sum += annual_temp[i];
av2 = sum / k;

Important - C++ does not check that the subscript that is used to reference
an array element actually lies in the subscript range of the array. Thus
C++ will allow the assignment of a value to annual_temp[200], however
the effect of this assignment is unpredictable. For example it could lead
to the program attempting to assign a value to a memory element that
is outside the program’s allocated memory space. This would lead to the
program being terminated by the operating system. Alternatively it might
actually access a memory location that is within the allocated memory space
of the program and assign a value to that location, changing the value of
the variable in your program which is actually associated with that memory
location, or overwriting the machine code of your program. Similarly reading
a value from annual_temp[200] might access a value that has not been
set by the program or might be the value of another variable. It is the
programmer’s responsibility to ensure that if an array is declared with n

179

elements then no attempt is made to reference any element with a subscript
outside the range 0 to n-1. Using an index, or subscript, that is out of range
is called Subscript Overflow. Subscript overflow is one of the commonest
causes of erroneous results and can frequently cause very strange and hard
to spot errors in programs.

23.1.3 Initialisation of arrays

The initialisation of simple variables in their declaration has already been
covered. An array can be initialised in a similar manner. In this case the
initial values are given as a list enclosed in curly brackets. For example
initialising an array to hold the first few prime numbers could be written as
follows:

int primes[] = {1, 2, 3, 5, 7, 11, 13};

Note that the array has not been given a size, the compiler will make it
large enough to hold the number of elements in the list. In this case primes
would be allocated space for seven elements. If the array is given a size then
this size must be greater than or equal to the number of elements in the
initialisation list. For example:

int primes[10] = {1, 2, 3, 5, 7};

would reserve space for a ten element array but would only initialise the first
five elements.

23.2 Example Program: Printing Outliers in Data

The requirement specification for a program is:

A set of positive data values (200) are available. It is required to
find the average value of these values and to count the number
of values that are more than 10% above the average value.

Since the data values are all positive a negative value can be used as
a sentinel to signal the end of data entry. Obviously this is a problem in
which an array must be used since the values must first be entered to find
the average and then each value must be compared with this average. Hence
the use of an array to store the entered values for later re-use.

An initial algorithmic description is:

initialise.
enter elements into array and sum elements.
evaluate average.
scan array and count number greater than

10% above average.
output results.

180

This can be expanded to the complete algorithmic description:

set sum to zero.
set count to zero.
set nogt10 to zero.
enter first value.
while value is positive

{
put value in array element with index count.
add value to sum.
increment count.
enter a value.

}
average = sum/count.
for index taking values 0 to count-1

if array[index] greater than 1.1*average
then increment nogt10.

output average, count and nogt10.

In the above the variable nogt10 is the number greater than 10% above the
average value. It is easy to argue that after exiting the while loop, count
is set to the number of positive numbers entered. Before entering the loop
count is set to zero and the first number is entered, that is count is one less
than the number of numbers entered. Each time round the loop another
number is entered and count is incremented hence count remains one less
than the number of numbers entered. But the number of numbers entered
is one greater than the number of positive numbers so count is therefore
equal to the number of positive numbers.

A main() program written from the above algorithmic description is
given below:

void main()
{

const int NE = 200; // maximum no of elements in array
float sum = 0.0; // accumulates sum
int count = 0; // number of elements entered
int nogt10 = 0; // counts no greater than 10%

// above average
float x; // holds each no as input
float indata[NE]; // array to hold input
float average; // average value of input values
int i; // control variable

// Data entry, accumulate sum and count
// number of +ve numbers entered

181

cout << "Enter numbers, -ve no to terminate: " << endl;
cin >> x;
while (x >= 0.0)

{
sum = sum + x;
indata[count] = x;
count = count + 1;
cin >> x;

}

// calculate average
average = sum/count;

// Now compare input elements with average
for (i = 0; i < count; i++)

{
if (indata[i] > 1.1 * average)

nogt10++;
}

// Output results
cout << "Number of values input is " << n;
cout << endl

<< "Number more than 10% above average is "
<< nogt10 << endl;

}

outliers.cpp

Since it was assumed in the specification that there would be less than
200 values the array size is set at 200. In running the program less than 200
elements may be entered, if n elements where n < 200 elements are entered
then they will occupy the first n places in the array indata. It is common
to set an array size to a value that is the maximum we think will occur in
practice, though often not all this space will be used.

23.3 Example Program: Test of Random Num-
bers

The following program simulates the throwing of a dice by using a random
number generator to generate integers in the range 0 to 5. The user is asked
to enter the number of trials and the program outputs how many times each
possible number occurred.

182

An array has been used to hold the six counts. This allows the program
to increment the correct count using one statement inside the loop rather
than using a switch statement with six cases to choose between variables if
separate variables had been used for each count. Also it is easy to change the
number of sides on the dice by changing a constant. Because C++ arrays
start at subscript 0 the count for an i occurring on a throw is held in the
i-1th element of this count array. By changing the value of the constant
die_sides the program could be used to simulate a die_sides-sided die
without any further change.

#include <iostream.h>
#include <stdlib.h> // time.h and stdlib.h required for
#include <time.h> // random number generation

void main()
{

const int die_sides = 6; // maxr-sided die
int count[die_sides]; // holds count of each

// possible value
int no_trials, // number of trials

roll, // random integer
i; // control variable

float sample; // random fraction 0 .. 1

// initialise random number generation and count
// array and input no of trials

srand(time(0));
for (i=0; i < die_sides; i++)

count[i] = 0;
cout << "How many trials? ";
cin >> no_trials;

// carry out trials
for (i = 0; i < no_trials; i++)

{
sample = rand()/float(RAND_MAX);
roll = int (die_sides * sample);

// returns a random integer in 0 to die_sides-1
count[roll]++; // increment count

}

// Now output results
for (i = 0; i < die_sides; i++)

{

183

cout << endl << "Number of occurrences of "
<< (i+1) << " was " << count[i];

}
cout << endl;

}

throwdie.cpp

23.4 Arrays as parameters of functions

In passing an array as a parameter to a function it is passed as a reference
parameter. What is actually passed is the address of its first element. Since
arrays are passed by reference this means that if the function changes the
value of an element in an array that is a parameter of the function then the
corresponding actual array of the call will have that element changed.

Though an array is passed as a reference parameter an & is not used to
denote a reference parameter. However it must be indicated to the compiler
that this parameter is an array by appending [] to the formal parameter
name. Thus to declare an array of real values as a parameter requires the
parameter to be specified as follows:

..., float A[],...

This is the same as a normal array declaration but the size of the array
is not specified. This is illustrated in the following example which returns
the average value of the first n elements in a real array.

float meanarray(int n, // IN no of elements
float A[]) // IN array parameter

// This function returns the average value of
// the first n elements in the array A which
// is assumed to have >= n elements.

{
float sum = 0.0; // local variable to

// accumulate sum
int i; // local loop control
for (i = 0; i < n; i++)

sum += A[i];

return sum/n;
} // end meanarray

meanarry.cpp

184

If when this function was called the value given for the parameter n
was greater than the number of elements in the actual array replacing the
parameter A then an incorrect result would be returned.
The function meanarray could be used as follows:

const int NE = 100;
float average, data[NE];
int i, m;

cout << "Enter no of data items (no more than "
<< NE << "): ";

cin >> m;

for (i = 0; i < m; i++)
cin >> data[i];

average = meanarray(m, data);

An array can also be an output parameter, consider the following ex-
ample in which the function addarray adds two arrays together to produce
a third array whose elements are the sum of the corresponding elements in
the original two arrays.

void addarray(int size, // IN size of arrays
const float A[], // IN input array
const float B[], // IN input array
float C[]) // OUT result array

// Takes two arrays of the same size as input
// parameters and outputs an array whose elements
// are the sum of the corresponding elements in
// the two input arrays.

{
int i; // local control variable
for (i = 0; i < size; i++)

C[i] = A[i] + B[i];

} // End of addarray

The function addarray could be used as follows:

float one[50], two[50], three[50];
.
.

addarray(20, one, two, three);

185

Note that the parameter size could have been replaced with any value
up to the size that was declared for the arrays that were used as actual
parameters. In the example above the value of 20 was used which means
that only the first 20 elements of the array three are set.

Also note that the input parameters A and B have been declared in the
function head as being of type const float. Since they are input param-
eters they should not be changed by the function and declaring them as
constant arrays prevents the function from changing them.

23.5 Strings in C++

So far the only form of character information used has been single characters
which are defined as being of type char. Character strings have also been
used in output.

A new data type is now considered, namely, the character string,
which is used to represent a sequence of characters regarded as a single data
item. In C++ strings of characters are held as an array of characters, one
character held in each array element. In addition a special null character,
represented by ‘\0’, is appended to the end of the string to indicate the
end of the string. Hence if a string has n characters then it requires an
n+1 element array (at least) to store it. Thus the character ‘a’ is stored
in a single byte, whereas the single-character string "a" is stored in two
consecutive bytes holding the character ‘a’ and the null character.

A string variable s1 could be declared as follows:

char s1[10];

The string variable s1 could hold strings of length up to nine characters
since space is needed for the final null character. Strings can be initialised at
the time of declaration just as other variables are initialised. For example:

char s1[] = "example";
char s2[20] = "another example"

would store the two strings as follows:

s1 |e|x|a|m|p|l|e|\0|

s2 |a|n|o|t|h|e|r| |e|x|a|m|p|l|e|\0|?|?|?|?|

In the first case the array would be allocated space for eight characters,
that is space for the seven characters of the string and the null character. In
the second case the string is set by the declaration to be twenty characters
long but only sixteen of these characters are set, i.e. the fifteen characters
of the string and the null character. Note that the length of a string does
not include the terminating null character.

186

23.5.1 String Output

A string is output by sending it to an output stream, for example:

cout << "The string s1 is " << s1 << endl;

would print

The string s1 is example

The setw(width) I/O manipulator can be used before outputting a
string, the string will then be output right-justified in the field width. If
the field width is less than the length of the string then the field width will
be expanded to fit the string exactly. If the string is to be left-justified in
the field then the setiosflags manipulator with the argument ios::left
can be used.

23.5.2 String Input

When the input stream cin is used space characters, newline etc. are used
as separators and terminators. Thus when inputting numeric data cin skips
over any leading spaces and terminates reading a value when it finds a white-
space character (space, tab, newline etc.). This same system is used for the
input of strings, hence a string to be input cannot start with leading spaces,
also if it has a space character in the middle then input will be terminated
on that space character. The null character will be appended to the end of
the string in the character array by the stream functions. If the string s1
was initialised as in the previous section, then the statement

cin << s1;

would set the string s1 as follows when the string "first" is entered (with-
out the double quotes)

|f|i|r|s|t|\0|e|\0|

Note that the last two elements are a relic of the initialisation at declaration
time. If the string that is entered is longer than the space available for it
in the character array then C++ will just write over whatever space comes
next in memory. This can cause some very strange errors when some of your
other variables reside in that space!

To read a string with several words in it using cin we have to call cin
once for each word. For example to read in a name in the form of a Christian
name followed by a surname we might use code as follows:

char christian[12], surname[12];
cout << "Enter name ";
cin >> christian;

187

cin >> surname;
cout << "The name entered was "

<< christian << " "
<< surname;

The name would just be typed by the user as, for example,

Ian Aitchison

and the output would then be

The name entered was Ian Aitchison

In Lesson 19 it was noted that it would be useful if the user of a program
could enter the name of the data file that was to be used for input during
that run of the program. The following example illustrates how this may be
done. It assumes that a file name for an input file must be entered and also
a file name for an output file.

// IEA 1996
// Example program which copies a specified
// input file to a specified output file.
// It is assumed that the input file holds a
// sequence of integer values.

#include <iostream.h>
#include <fstream.h>

int main()
{

ifstream ins; // declare input and output
ofstream outs; // file streams
char infile[20], outfile[20]; // strings for file names
int i;

// ask user for file names
cout << "Enter input file name: ";
cin >> infile;
cout << "Enter output file name: ";
cin >> outfile;

// Associate file names with streams
ins.open(infile);
if (ins.fail())

{
cout << "Could not open file " << infile

188

<< " for input" << endl;
return 1; // exit with code 1 for failure

}
outs.open(outfile);
if (outs.fail())

{
cout << "Could not open file " << outfile

<< " for output" << endl;
return 1; // exit with code 1 for failure

}

// input from input file and copy to output file
ins >> i;
while (!ins.eof())

{
outs << i << " ";
ins >> i;

}
outs << endl;

// close files
ins.close();
outs.close();
return 0; //return success indication.

}

This program assumes that the file names entered by the user do not contain
more than 19 characters. Note how a space character was output after each
integer to separate the individual values in the output file.

23.6 Summary

• An array is used to store a collection of data items which are all of the
same type.

• An individual element of an array is accessed by its index, which must
be an integer. The first element in the array has index 0.

• When arrays are declared they must be given an integer number of
elements. This number of elements must be known to the compiler at
the time the array is declared.

• If an attempt is made to access an element with an out of range index
then an unpredictable error can occur. Always ensure that array in-

189

dices for elements of arrays are in range when verifying the correctness
of your programs.

• Arrays can be initialised when they are declared.

• When an array is passed as a parameter to a function then it is passed
as a reference parameter. Hence any changes made to the array inside
the function will change the actual array that is passed as a parameter.

• Character strings are represented by arrays of characters. The string
is terminated by the null character. In declaring a string you must set
the size of the array to at least one longer than required to hold the
characters of the string to allow for this null character.

• Strings can be input and output via the input and output streams,
cin and cout.

23.7 Review Questions

1. If an array has a 100 elements what is the allowable range of subscripts?

2. What is the difference between the expressions a4 and a[4]?

3. Write a declaration for a 100 element array of floats. Include an ini-
tialisation of the first four elements to 1.0, 2.0, 3.0 and 4.0.

4. An array day is declared as follows:

int day[] = {mon, tue, wed, thu, fri};

How many elements has the array day? If the declaration is changed
to

int day[7] = {mon, tue, wed, thu, fri};

how many elements does day have?

5. What would be output by the following section of C++?

int A[5] = {1 , 2, 3, 4};
int i;
for (i=0; i<5; i++)
{
A[i] = 2*A[i];
cout << A[i] << " ";

}

6. What is wrong with the following section of program?

190

int A[10], i;
for (i=1; i<=10; i++)

cin >> A[i];

7. Write a function heading for a function which will double the first n
elements of an array. If the function was amended so that it would
return false if n was larger than the size of the array how should the
function heading be written? If the function was to be changed so that
a new array was produced each of whose elements were double those
of the input array how would the heading be written?

23.8 Exercises

1. To familiarise yourself with using arrays write a program that declares
two float arrays, say with 5 elements each, and carries out the fol-
lowing:

(a) Input some data from the user into the two arrays.
(b) Output the sum of the elements in each of the two ar-

rays.
(c) Output the inner product of the two arrays - that is the

sum of the products of corresponding elements A[0]*B[0]
+ A[1]*B[1]+etc.

(d) Produce an estimate of how different the values in the
two arrays are by evaluating the sum of squares of the
differences between corresponding elements of the two
arrays divided by the number of elements.

Start by only entering and printing the values in the arrays to ensure
you are capturing the data correctly. Then add each of the facilities
above in turn.

2. A popular method of displaying data is in a Histogram. A histogram
counts how many items of data fall in each of n equally sized intervals
and displays the results as a bar chart in which each bar is proportional
in length to the number of data items falling in that interval.

Write a program that generates n random integers in the range 0-99
(see exercise 3 of Lesson 16) and produces a Histogram from the data.
Assume that we wish to count the number of numbers that lie in each
of the intervals 0-9, 10-19, 20-29,, 90-99. This requires that we
hold 10 counts, use an array to hold the 10 counts. While it would
be possible to check which range a value x lies in by using if-else
statements this would be pretty tedious. A much better way is to note
that the value of x/10 returns the index of the count array element to

191

increment. Having calculated the interval counts draw the Histogram
by printing each bar of the Histogram as an appropriately sized line
of X’s across the screen as below

0 - 9 16 XXXXXXXXXXXXXXXX
10 - 19 13 XXXXXXXXXXXXX
20 - 29 17 XXXXXXXXXXXXXXXXX

etc.

3. In question 1 above you should have written C++ statements to en-
ter numbers into an array. Convert these statements into a general
function for array input. Your function should indicate the number of
elements to be entered and should signal an error situation if this is
greater than the size of the array—think about the required parame-
ters. Also write a function to output n elements of a given array five
to a line.

Write a driver program to test these functions and once you are satis-
fied they are working correctly write functions:

(a) To return the minimum element in the first n elements
of an array.

(b) To return a count of the number of corresponding ele-
ments which differ in the first n elements of two arrays
of the same size.

(c) Which searches the first n elements of an array for an
element with a given value. If the value is found then the
function should return true and also return the index of
the element in the array. If not found then the function
should return false.

In these functions incorporate error testing for a number of elements
greater than the array size.

192

